(本小题满分12分)
解:(Ⅰ)设数列{an}的公差为d(d≠0),
∵S3=a4+2,∴3a1+
=a1+3d+2.①…(3分)3×2×d 2
又∵a1,a2-1,a3-1成等比数列,
∴a1(a1+2d?1)=(a1+d?1)2.②…(5分)
由①②解得a1=1,d=2.…(6分)
∴an=a1+(n-1)d=2n-1.…(7分)
(Ⅱ)∵
=1
anan+1
=1 (2n?1)(2n+1)
(1 2
?1 2n?1
),…(8分)1 2n+1
∴Tn=
[(1?1 2
)+(1 3
?1 3
)+(1 5
?1 5
)+…+(1 7
?1 2n?1
)]1 2n+1
=
(1?1 2
).…(10分)1 2n+1
∴当n=1时,T1=
(1?1 2
)=1 2×1+1
,1 3
当n>1时,Tn<
,1 2
∴
≤Tn<1 3
(n∈N*).…(12分)1 2