数学一直是人类从事实践活动 的重要工具,是基础教育中最基本的课程之一。每个学生都希望能掌握好数学知识,培养和提高自己的计算能力、逻辑思维能力、空间想象能力、创新能力以及对于数学的初步应用。然而对于一个刚从小学进入初中的初一学生来说,怎样才能学好数学呢?我觉得可以从抓各种学习习惯入手。从小学进入初中是学习阶段的一个重大转折。根据人的生理和心理发展规律,初中学生正是处在各种习惯形成的关键阶段,如不及时抓住这一有利时机,形成各种良好的学习习惯,就很容易染上许多不良的学习习惯,严重地影响智力和能力的发展。而良好的学习习惯是激发思维、开发能力、发展个性的重要心理要素,是取得良好的教学效果的基础,所以培养良好的学习习惯是学好数学的关键。下面从四个方面谈一谈如何培养和塑造良好的学习习惯。
一、 看书习惯
这是自学能力的基本功。根据美国和前苏联对几十所名牌大学的调查表明,那些卓有成就的科学家有20%~25%的知识是来自学校,而75%~80%的知识是靠他们离校后通过工作、自学和科研来获得的。根据心理规律,初中学生已经具备阅读能力,但由于在小学受直观模仿习惯的影响,使众多学生误把数学课本当作习题集。所以从初一开始就应重视纠正自己的错误学习习惯,树立数学课本同样需要阅读的正确思想,并注意总结如何阅读数学课本的方法。
1. 每一节课前都务必养成预习的习惯,努力在预习中发现自己不懂的问题,以便能带着问题听讲。课堂上注意老师如何阅读课文,从中培养自己掌握如何分析定义、定理中的关键字、词、句以及与旧知识的联系。
2. 经常归纳总结学过的知识,培养复习习惯。刚开始时,可跟着老师总结一节课或一个单元的内容,一个阶段后可根据老师提出的复习提纲,自己带着问题去钻研课文,最后过渡到由自己归纳,促使自己反复阅读课文,及时复习,温故知新。
二、 笔记习惯
“好记性不如烂笔头”。中学数学内容丰富,课堂容量一般比较大,为系统学好数学,从初中时期就必须重视培养做课堂笔记的习惯,课上做笔记还可约束精力分散,提高听课效率。一般,课堂笔记除记下讲课纲目外,主要是记老师讲课中交代的关键、思路、方法及内容概括。特别注意随时记下听课中的点滴体会及疑问。在“听”与“记”两个方面,听是基础,切莫只顾“记”而影响“听”。
为了使课堂笔记逐步提高质量,同学间应进行适当的交流,相互取长补短。
三、 动手实践、合作交流习惯
“实践出真知”。动手实践能集中注意力,提高学习兴趣,能加深对学习对象的印象和理解。在动手实践中,能把书上的知识与实际事物联系起来,能形成正确深刻的概念。在动手实践中,能手脑并用,用实际活动逐步形成和发展自己的认知结构,能形成技能,发展能力。在动手实践中养成“做前猜想-----动手实验-----操作结果-----归纳总结”的习惯。
“三人同行,必有我师”。同学间相互交流学习结果,各抒己见,取长补短。能达到动脑、动口、动手、激发思维、活跃气氛、调动积极性的作用。
四、 作业习惯
数学作业是巩固数学知识、激发学习兴趣、训练数学能力的重要环节。有些同学视作业为负担,课后只凭着课堂上的印象匆忙作答,往往解法单一;有的还字迹潦草、马虎粗心、格式不规范、甚至抄袭。这就错失了训练良机,严重地响了学习效果。应该正确认识做作业的目的性,培养良好的作业习惯。良好的作业习惯应包括:
1. 要养成作业前看书的习惯。做作业前要认真阅读复习课文、观察例题的解题格式、步骤和方法。这正是“磨刀不误砍柴功”。
2. 要养成审题的习惯。读题后,先弄清题目是什么题型、它有什么条件、有哪些特点等。
3. 要养成独立作业的习惯。若有特殊情况,不能如期完成,可向老师说明情况:如遇到难题不会做时,可向老师或同学请教,弄懂以后独立完成。切不可为了应付任务而去抄袭。
4. 要养成对已做作业进行再思考的习惯。不少同学不重视对已做作业进行再看、再思考,从而导致错误做法在头脑中形成定势。有的题目做错,老师订正过了,你还错,就是这个原因。常此下去,在新知识和做新作业中会出现更大的错误,为了巩固作业的成果,同学们在每次做新的作业之前,务必对前一天的作业进行反馈。反馈内容包括:(1)题目类型;(2)解题思路与方法;(3)出错问题的原因;(4)订正出错问题;(5)收集出错问题(就是将自己出错的问题专门收集在一个地方,标注出以上四项内容,以便将来复习时纠错)。
五、 思维习惯
科学的思维方法和良好的思维习惯是开发智力、发展能力的钥匙。心理学告诉我们,初一阶段是学生从形象思维向抽象思维转变的重要时期,所以这时候一定要重视良好的思维习惯的培养。根据初中数学内容的特点,良好的思维习惯包括逻辑性、周密性、发散性、收敛性、逆向性。
1. 逻辑性。这是要求学生“答必有据”切忌想当然。在推理演算过程中,能够懂得其中每一步的依据,不懂之处就不写,设法弄懂之后再继续推理演算。
2. 周密性。这是要求学生全面的考虑问题。如:已知点C在直线AB上,线段AB=8cm,线段BC=3cm,求线段AC的长。全面考虑问题就要分点C在线段AB上和点C在线段AB的延长线上两类进行讨论:当点C在线段AB上时,AC=AB-BC=8-3=5cm;当点C在线段AB的延长线上时,AC=AB+BC=8+3=11cm。培养这种习惯,应特别注意老师在课堂上指出的“易出错或想不全”的情形与原因。
3. 发散性。这是要求学生运用多种办法解决一个问题。培养这个习惯,要特别注意老师在讲一题多解时的思考方法、问题推广延拓时的分析,在数学学习过程中努力养成寻求一题多解,一题多变的习惯。
4. 收敛性。这是在发散思维的基础上进行归纳总结,以达到多题一解、举一反三。发散与收敛两种思维综合运用可相得益彰。
5. 逆向性。这是要求学生把某些公式、法则、定理的顺序颠倒过来考虑。如计算:
(-0.38)×4.58-0.62×4.58,可以逆向运用乘法分配律,就得到简便计算的方法。
六、 质疑习惯
我国古代大教育家孔子一贯主张学习要知其然,更要知其所以然。就是对事物不但要问“是什么”,更要问“为什么”。
心理学家告诉我们,人们在接受一个新的问题时,普遍有一种弄个究竟的欲望。初中学生生处在思维活跃、好奇心强的时候,应该有刨根问底的心理要求。但由于受到陈旧的社会心理所束缚,不敢大胆的对所遇到的问题“乱想”、“乱说”,课堂上是这样,课外也是这样,使他们的个性受到严重扼杀,不利于健康的成长。要扭转这种局面,要求学生在课堂上要大胆发言、积极讨论、动手实践,课后勤思多问,努力创造培养出喜欢质疑的良好习惯,同学们要知道老师其实最喜欢勤思多问的学生,要养成对知识刨根究底的习惯,养成随时对疑问进行质疑的习惯。
培养学习习惯是一项系统工程。它需要同学们有决心、恒心、耐心。达尔文说:“最有价值的知识是关于方法的知识”。久而久之的方法便成为自然的习惯,所以培养良好的学习习惯是掌握一把打开知识宝库的钥匙,它所释放出的能量将是无可比拟的。
首先未知数一定要明确,往后就不难了。依照条件,和自己设的未知数列出方程,有的题目需要运用好几次未知数,那就是一个经验问题了。加油吧!相信你一定能学好!!
这些方法只不过起一个过渡作用,真正学好方程并不需要。
加一点:你在看题目时先看问题,然后仔细地看有什么条件,看看哪些是已知的,哪些是未知的。接着思考要求出答案需要哪些条件,再利用已知条件来获得那些条件(有的简单的题目会直接给出那些条件),最后再求出答案。
用一元一次方程解应用题只不过是把答案或者求出答案需要的条件变为x,从而更好地分析题目。
如果你算数学好的话,其实一元一次方程也不是太难。下面是一般的一元一次方程的格式:
解:(问题照抄,只是“什么”改为x或根据题意来设)
依题意得(概括的用语,可以省略很多文字来说明,深受广大中学的师生所喜爱):列式(就是要你把x代入式子中,就像是你把算数的检查一样,把x当作答案来求已知条件)
解方程(就是要你把方程解出来)
答:……
or
一元一次方程应用题是七年级上学期的重点当然也是难点,它的学习对今后不等式解应用题以及函数问题有着决定性的意义,如果没有学好它,那今后的学习将显得比较困难.
一般在解决问题时第一步就是要设出未知数,未知数的设法主要有以下几种:
1,有比较关系时,如甲比乙多8,我们一般设较小的为X,这样计算时主要用的是加法不易出错;
2,有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为X,用乘法表示其余量利于计算;
3,在分数应用题中,我们设单位'1'为X,
4,在有比的问题中,我们设一份数为X,
5,在有和的问题中,我们设其中任意一个为X都可以,比如说两个班共有50人.
解应用题的基本步骤有:
1,依据题目要求设出合适的未知数;
2,根据题目实际情况找出等量关系,用文字关系式表示出来;
3,依据等量关系,把关系式中的每一项用数或者未知数表示出来列出方程;
4,解方程,依据题目问题计算;
5,把方程的解代入原题目检验.
其中的难点是第二步,找出等量关系,有些题目中的关系是比较明显的,而有的则是隐含的,需要大家去用心体会,下面我给大家示例两题:
1: 爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘?
分析:属于和的问题,所以任意设一个为X,设爷爷赢了X题,则孙子赢了(12-X)盘,题目中的等量关系是爷爷得分=孙子得分,爷爷得分用X表示,孙子得分用3(12-X)表示,所以本题方程为 X=3(12-X),解之得X=9,则12-X=12-9=3,所以爷爷赢9盘,孙子赢3盘.
2:在一只底面直径为30cm,高为8cm,的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形空容器里,圆柱形容器中的水有多高?
分析:本题没有明显类型所以直接设问题,设圆柱形容器中的水有X厘米,题目中的等量关系是隐含的,是圆锥形容器中的水的体积=圆柱形容器中水的体积,分别表示后有方程
1/3*3.14*(30/2)(30/2)*8=3.14(10/2)(10/2)X,解之得X=24.
初一的数学,现在应该是学一元一次方程。要先弄清楚题意,找出其中相等的关系,分清楚是什么类型的题目。是行程问题:相遇问题,还是追及问题;是盈亏问题,应该先设什么,再求什么,要问什么,求什么;商品利润问题,首先要记住涉及利润,利润率,成本(进价),卖价(销售价),标价,实际售价,打折价,打折,提价率,降价率等问题,在根据相等的关系列方程。......基础差,没关系,只要有心要学,一定可以学好,初中的数学很容易的。学上手了,你会觉得学数学是一种乐趣。
初一数学很简单,特别是代数与有理数
代数有理数主要是运算方面要多加练习,还要很细心
一元二次方程是往后学习二元一次方程组和一元二次方程的基础,这个基础要打牢,上课多做笔记
不过真的很容易,我也不知道要说什么了,反正不需要太着急,主要是为初二初三打基础
数学其实很容易学好,主要是看你用什么方法,如果你一直想着数学很难,而且你根本看不下去数学,即使很容易学的你也回学不好!
你要对数学感兴趣,自然觉得很容易!
不过在上课时认真听,和多加练习,细心这几点是不能少的!