如何学好初中数学?

2024-11-08 01:34:21
有5个网友回答
网友(1):

初中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234 提取码:1234

简介:初中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

网友(2):

如何学好数学

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

如何学好数学

学好数学的方法其实跟读其他科目没太大差别,流程上可区分为六个步骤:

1. 预习

2. 专心听讲

3. 课后练习

4. 测验

5. 侦错、补强

6. 回想

以下就每一个步骤提出应注意事项,提供同学们参考。

1. 预 习 : 在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。

2. 专心听讲:

(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。

若老师讲到你早先预习时不了解的那部份,你就要特别注意。

有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答错的关键所在。

(2)上课时一面听讲就要一面把重点背下来。定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。

待回家后只需花很短的时间,便能将今日所教的课程复习完毕。事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什麼都不记得,白白浪费一节课,真可惜。

3. 课后练习 :

(1) 整理重点

有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学著重推理,不必死背,所以什麼都不背,这观念并不正确。一般所谓不死背,指的是不死背解法,但是基本的定义、定理、公式是我们解题的工具,没有记住这些,解题时将不能活用他们,好比医师若不将所有的医学知识、用药知识熟记心中,如何在第一时间救人。很多同学数学考不好,就是没有把定义认识清楚,也没有把一些重要定理、公式”完整地〃背熟。

(2) 适当练习

重点整理完后,要适当练习。先将老师上课时讲解过的例题做一次,然后做课本习题,行有余力,再做参考书或任课老师所发的补充试题。遇有难题一时解不出,可先略过,以免浪费时间,待闲暇时再作挑战,若仍解不出再与同学或老师讨论。

(3) 练习时一定要亲自动手演算。很多同学常会在考试时解题解到一半,就接不下去,分析其原因就是他做练习时是用看的,很多关键步骤忽略掉了。

4. 测验 :

(1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。

(2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢, 移项以及加减乘除都要小心处理,少使用“心算” 。

(3) 考试时,我们的目的是要得高分,而不是作学术研究,所以遇到较难的题目不要 硬干,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到最完美的演出。

(4) 考试时,容易紧张的同学,有两个可能的原因:

a. 准备不够充分,以致缺乏信心。这种人要加强试前的准备。

b. 对得分预期太高,万一遇到几个难题解不出来,心思不能集中,造成分数更低。这种人必须调整心态,不要预期太高。

5. 侦错、补强 :

测验后,不论分数高低,要将做错的题目再订正一次,务必找出错误处,修正观念,如此才能将该单元学的更好。

6. 回想:

一个单元学完后,同学们要从头到尾把整个章节的重点内容回想一遍,特别注意标题,一般而言,每个小节的标题就是该小节的主题,也是最重要的。将主题重点回想一遍,才能完整了解我们在学些什麼东西。

如何学好数学
漳州市第三中学 吴坚
一、什么是数学?
恩格思说:“纯数学的对象是现实世界的空间形式与数量关系。”数学包括纯粹数学、应用数学以及这两者与其它学科的交叉部分,它是一门集严密性、逻辑性、精确性和创造力与想象力于一体的学问,也是自然科学、技术科学、社会科学管理科学等的巨大智力资源。数学具有自己独一无二的语言系统——数学语言,数学具有独特的价值判断标准——独特的数学认识论。数学不仅是研究其它自然科学与社会科学的重要工具,它本身也是一种文化,数学从一个方面反映了人类智力发展的高度。数学有其自身的美,一些从事数学工作的人把数学看作是艺术。然而随着科学的不断发展,数学研究的对象已远远超过一般的空间形式和数量关系。数学的抽象性和应用性向两个极端同时有了巨大的发展。如果把抽象数学看成是“根”,把应用数学看成是“叶”,那么数学已是自然科学中的一棵枝繁叶茂的参天大树。
我们所处的时代是信息时代,它的一个重要特征是数学的应用向一切领域渗透,高科技与数学的关系日益密切,产生了许多与数学相结合的新学科。随着当今社会日益数学化,一些有远见的科学家就曾经深刻指出:“信息时代高科技的竞争本质上是数学的竞争。”
二、数学的应用
数学是科学的“王后”和“仆人”。按一般的理解,女王是高雅。权威和至尊至贵的,是阳春白雪,在科学中只有纯粹数学才具有这样的特点。简洁明了的数学定理一经证明就是永恒的真理,极其优美而且无懈可击。另一方面,科学和工程的各个分支都在不同程度上大量使用数学,享受着数学的贡献。这时数学科学就是仆人,英文书名中servant这个字在英文里有“供人们利用之物,有用的服务工具”的意思。这一提法巧妙地说明了数学在整个科学中的地位和作用,正确认识和理解数学科学的重要性对于发展科学、经济以及教育是十分重要的。
1、数学是其它学科的基础
无论是物理、化学、生物、还是信息、经济、管理等新兴学科甚至于人文学科的学习,数学方法都是必要的基础工具。过去人们一至认为,数学是科学和工程学的通用语言。你要向大家描述你的发现和成果,那么你就必须掌握数学、应用数学。而现在,上至天气预报,下至污水处理,甚至超市进货的周期、数量,公共交通线路的规划、设计都要用到数学。数学建模及相关的计算,正在成为工程设计的关键。就是过去很少用到数学的医学、生物等领域也有了很多的应用。如在心血管病的诊断方面,用上了流体力学的基本方程,做手术前可以用计算机模拟各种情况下可能出现的结果,作为诊断参考;神经科用数学来分析各种节律等。在生物DNA的研究中也大量地应用了数学知识,其双螺旋结构就是与几何相关的问题。
2、数学在其它领域的应用
20世纪最大的科学成就莫过于爱因斯坦的狭义和广义相对论了,但是如果没有黎曼于1854年发明的黎曼几何,以及凯莱,西勒维斯特和诺特等数学家发展的不变量理论,爱因斯坦的广义相对论和引力理论就不可能有如此完善的数学表述。爱因斯坦自己也不止一次地说过这一点。
计算的技艺——数值分析以及运算速度的问题(计算机的制造),牛顿、莱布尼兹、欧拉、高斯都曾给予系统研究,它们一直是数学的重要部分。在现代计算机的发展研制中数学家起了决定性的作用。莱布尼兹,贝巴奇等数学家都曾研制过计算机。20世纪30年代,符号逻辑的研究十分活跃,丘奇,哥德尔,波斯特和其他学者研究了形式语言。经过他们以及图灵的研究工作;形成了可计算性这个数学概念。1935年前后,图灵建立了通用计算机的抽象模型。这些成果为后来冯·诺伊曼和他的同事们制造带有存储程序的计算机,为形式程序的发明提供了理论框架。
表面看来,数学与人文科学,社会科学联系并不是很紧密,毕竟一位作家没有必要绞尽脑汁去证明哥德巴赫猜想,一位画家不需要懂得微积分的知识,实际上,人文科学也是不能脱离数学的,作为理性基础和代表的数学思想方法,数学精神被人们注入文学、艺术、政治、经济、伦理、宗教等众多领域。
数学对社会科学、人文科学的作用,影响主要不是很直观的公式、定理,而是抽象的数学方法和数学思想,其中最突出的莫过于演绎方法,亦即演绎推理,演绎证明,就是从已认可的事实推导出新命题,承认这些作为前提的事实就必须接受推导出的新命题。哲学上,研究一些永恒的话题,诸如生与死等,这些课题是无法用简单归纳(反复试验法),类比推理来研究的,只能求助于数学方法——演绎推理。类似的例子还有很多,数学在一定程度上影响了众多哲学思想的方向和内容,从古希腊的毕达可拉斯学派哲学到近代的唯理论,经验论直到现代的逻辑证实主义,分析哲学等,都可以证明这一点。
数学还对音乐,绘画,语言学研究,文学批评理论产生了一定的影响。
在音乐方面,自从乐器的弦长和音调之间存在密切关系的事实被发现后,这项研究就从来没有中止过,美学上对黄金分割的研究也是一个不可或缺的话题。文艺复兴以前,绘画被看作同作坊工人一样低贱的职业,文艺复兴开始以后,画家们开始用数学原理如平面几何、三视图、平面直角坐标系等指导绘画艺术,达芬奇的透视论就是一个突出的例子(借助平面几何知识,达到绘画上所追求的视觉效果——远物变近,小物变大),从此,绘画步入了人类艺术的殿堂。
从实际应用来看,许多社会科学,人文科学也离不开数学。
在研究历史,政治时,用到最多的方法就是统计,统计学在问世之初就被称作政治数学,可见其地位之尊宠。
历史学的一大分支考古学更是离不开数学,如三角计算、指数函数、对数函数等。考古离不开物理,化学方法,但这两门学科缺少了作为工具的数学,将一无是处。
很多高中数学知识,如集合、映射、加法原理、乘法原理等在日常的工作和生活学习中“经常被用到”,而如概率分析、函数的极值与导数问题虽然在人们的日常生活中并不那么普遍,但却在现代经济发展中起着举足轻重的作用。
例如概率分析,也是应用数学的一门基础学科,它能通过研究各种不确定因素发生不同幅度变动的概率分布及其对方案的经济效果的影响,对方案的净现金流量及经济效果指标作出某种概率描述,从而能够对方案的风险情况作出比较准确的判断。因此,在实际工作中,如果能通过统计分析给出在方案寿命期内影响方案现金流量的不确定因素可能出现的各种状态及其发生概率,就可能过对各种因素的不同状态进行组合,求出所有可能出现的方案净现金流量序列及其发生概率,就可计算出方案的净现值、期望值与方差。
为了适用经济高速发展的需要,高中数学中相应加强函数内容的教学,增加概率统计、线性规划、数学模型等内容。

(接第75期)
3、学习数学的目的
作为一门基础学科,学数学不一定要成为数学家,更重要的是培养人的数学观念和数学思想,培养人解决数学问题的能力。数学的重要性不仅体现在数学知识的应用,更重要的是数学的思维方式。它对培养人的思维、创新、分析、计算、归纳、推理能力都有好处。学生进入社会后,也许很少直接用到数学中的某个公式和定理,但数学的思想方法,数学中体现出的精神,却是他终身受用的。
数学的思考方式有着根本的重要性。简言之。数学为组织和构造知识提供方法。一旦数学用于技术,它就能产生系统的、可再现的并能传授的知识。分析、设计、建模、模拟和应用便会成为可能,变成高效的富有结构的活动。也就是说能转化为生产力。但是,50年前数学虽然也直接为工程技术操供—些工具,但基本上是间接的。先促进其他科学的发展,再由这些科学提供工程原理和设计的基础。现在,数学和工程之间在更广阔的范围内和更深的层次上,直接地相互作用着,极大地推动了数学和工程科学的发展,也极大地推动了技术的进步。
20世纪后半叶最重要的科技进展之?是计算机、信息和网络技术的迅速发展。我们仅就计算机的运算速度来看,1946年公开展示的第一台计算机电子数学积分计算机的运算速度是每秒符点运算5,000次;现在已经达到每秒符点运算100亿次,据专家估计到2010年可达到一万亿次。可以想象现在计算机能完成的工作和50年前相比简直是不可同日而语。用来描述、研究各种实际问题产生了许许多多的数学模型。有的能求解出来,就能不同程度地解决问题。然而,当时算不出来、或者不能及时算出来,也就不能解决问题。现在,计算速度等技术指标在某种意义下远远走在前面了。数学建模和与之相伴的计算正在成为工程设计中的关键工具。科学家正日益依赖于计算方法。而且在选择正确的数学和计算方法以及解释结果的精度和可靠性方面必须具有足够的经验。我们看到的是各行各业都在大量应用数学和计算机等技术,通过数学建模、仿真等手段解决问题,并且把解决同类问题的方法和成果制作成软件(它们甚至是相当傻瓜化的),并进行销售。人们看到的正是这种数学应用大发展的景象,更确切地说是美国科学基金会数学部主任在评论数学科学成为五大创新项目之首时所说的,“该重大创新项目背后的推动力就是一切科学和工程领域的数学化。”当然也有不同认识,也有人认为不需要懂得很多数学,只要会用软件就行了。也有人认为现在不需要发展基础数学了,只要通过数学建模和计算加上物理的直观就可以解决问题了。特别是,有人认为现在的学生不需要那么多的数学了。这实在是极大的误解。
三、中学阶段如何提高数学成绩
1、培养兴趣,带好奇心学习。
学数学要爱数学。数学是美丽的,它的美体现在结论的简单明确,它是一种理性美和抽象美。数学就像一个花园,没进门时看不出它的漂亮可一旦走进去,就会感觉它真美。许多数学家都把兴趣放在学好数学的首要位置。其次是好奇心,学数学要有想法,要敢于去猜想,要带着好奇心去学数学。要从解题过程找乐趣,找成就感。只要好奇心和求知欲变成了解决问题的渴求,就能自觉的提高运用数学知识真正去解决问题的能力。只有对学习数学充满了乐趣,才能更自觉地学习和研究数学。
2、仔细看书,弄懂数学语言。
不爱读数学教科书,是中学生的“通病”。数学教科书是用数学语言写它成包括文字语言、符号语言、图形语言。它语言简洁、逻辑性强、内涵丰富、含义深刻,因而看数学教科书切不可浮光掠影,一目十行。
数学概念、定义、定理等都用文字语言表述,看书时务必留心。预习时要做到“五要”:①要用波浪线划出重点;②要将公式及结论做记号;③要在看不懂、有疑问的地方用铅笔画问号;④要将简单习题的答案、解题要点写在后面;⑤如果定义、定理中的条件不止一个,就要把条件编上号码。
符号语言有丰富的内涵,要写得出,辩得清、记得牢。读符号语言,要说得出它的涵义,辩得明它的特征。
图形语言既能反映元素的相对位置,又是数量关系的直接反映。因而观看几何图形时要读懂隐藏在图形元素之间的内在联系及数量关系;而观看图像,要从其形状窥视出函数的性质。
如果课前、课后阅读数学书能达到上述要求,学数学也就入门了;若由此养成读书的良好习惯,提高成绩则指日可待。
3、认真听课,掌握思维方法。
听课要全神贯注,随着老师的讲解积极思维。预习时似懂非懂的概念弄明白了么?疑团化解了么?老师口授的真知灼见、补充的例题、精彩的解法,要抓紧记录下来。写好听课笔记,不但留下一份宝贵的资料,而且也能促使自己注意力集中。
听课时还要做到不断生疑、质疑,敢于提问、答问。要想想老师的讲解是否完整无误,解法是否严谨无瑕。板书的范例如果懂了,就应思谋新的解法;如果有疑点就应大胆质疑。争着回答问题绝不是“图表现”,而是阐述自己的见解,提高自己的口头表达能力。即使自己回答错了,将问题暴露后,也便于订证。听课最忌盲从,随波逐流,人云亦云,不懂装懂。
4、独立钻研,学会归纳总结。
养成良好的独立钻研学习的习惯必须做到:
①按时完成作业,巩固所学知识。作业惟有按时完成,才能得以巩固知识,尽量减少遗忘。而在完成作业的过程中,将增大知识复现率,促进自己的思考力,发挥解决问题的创造力。
善于学习的同学还应注意作业的保洁与收藏,因为这既是珍视自己的劳动成果,也是很好的复习资料。
②适时复习功课,形成知识网络。章节复习、单元复习、迎考复习等是数学学习不可或缺的一部份,它有承前启后的作用。复习时应按照一定的系统归纳总结知识,总结方法,形成数学的“经纬网”。这里的“经”指的是数学的各个分支的知识;“纬”指的是相同的数学方法在不同分支中的应用。要想学好数学就必须织好数学的“经纬网”。
③应注重书写的规范化。数学学科是一门专业性很强的学科,它对表达、叙述的过程,符号使用的规定都有严格的要求。因而在做练习、作业、考试时书写都应规范化。
④运用所学知识,不断开拓创新。数学有很强的联贯性,新旧知识之间并没有不可逾越的鸿沟。因此借书本知识,进行联想,不但可以增强钻研兴趣,而且能培养自己的创造性思维能力。
注意了以上几种做法,不但可以巩固原有的知识,而且扩展了自己的知识领域,沟通了数学知识之间的内在联系。有了良好的钻研习惯,定能学好数学。

网友(3):

第一人人可以占,原来占第一的同学也不一定就比你更聪明多少,脑细胞也不一定比你多。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?!所以你第一要过心理关,就是说:要坚信你一定能成功,一定会超过现有的第一,包括现在是第一的你自已。
第二、你要天天锻炼。没有一个健康的身体,你什么事也做不好,即使偶尔做好了,也不能长久。每天30分钟左右的锻炼一定要天天坚持。锻炼的形式多种多样,跑步、打乒乓球、打篮球、俯卧撑、立定跳远等等都可以。有些同学好面子,见到别人不跑步,怕自已跑别人看见了不好意思,那就错了,真正不好意思的是辛苦了几年考不上大学,是上了几年大学还要下岗。如果将来自已养活不了自已,那才是真正不好意思的。
第三、学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还重要,将来的复习主要靠它。课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?”
第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的《备忘录》中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到《备忘录》中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高30%-60%。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。
第五、记帐。你的学习一定要有一本帐,你什么时候做得好,记下来,什么时候错了题,记下来(注:帐本上只记“今天错题为《备忘录》××页×题)。课下几点几分学了英语,记录好;几点几分至几点几分学了物理记下来。把你生活中锻炼、学习的分分秒秒记录在你的帐本上,把你每次作业和考试中的正确题数、错误题数和错误题号(《备忘录》上的页号题号)一一记录在你的帐本上。把你每天学会的知识点都记录在帐本上,以备明天、后天再检查一下自已是否真正掌握了这些知识点。在帐本上过去了几天的知识点,你一定要学会并能熟练掌握。帐本记录的是你学习、锻炼中每一个细节。这样记下来,在校生活中,每天约有一页32开纸的记录量,不在校时可能有两页32纸的记录量。在星期和假期里千万不能间断。把你的帐一天天积累起来,这就是你所走过的第一之路。

网友(4):

《学数学新课程标准》对初中数学中的基础知识作这样的描述:“初中数学中的基础知识包括初中代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法。
数学的定义、法则、性质、公式、公理、定理等一定要记熟,要能背诵,朗朗上口。我们常说要在理解的基础上去记忆。但有些基础知识,如定义,是没有什么道理好讲的。如一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1,未知数的系数不能为0的方程叫做一元一次方程。在这个定义中,为什么只含有一个未知数而不是两个、三个,为什么未知数的最高次数是1而不是2或者3,为什么未知数的系数不能为0等,这些问题是没有什么价值的,或者说,定义只不过是对某种事物或现象的一种规定的或固有的含义。而有些基础知识,如法则、公式、定理等,不但要知其然,还要知其所以然。如平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补等,不但要记住,还要能够运用所学知识说明平行的两直线为什么有这样的性质。这就是我们说的在理解的基础上去记忆。在学习过程中,难免有一些暂时不理解的基础知识,在这种情况下,即使死记硬背也要记住,记住后,在后绪的学习过程中再去逐步理解。另外,一些重要的数学方法,数学思想也是需要记住的。只有这样,你在解数学题的过程中才能得心应手,从而体验到数学的美学价值,培养起学好数学的信心。
三、讲“方法”联系“思想”,以“思想”指导“方法”,两者相得 益彰。
所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识,是属于数学观念一类的东西,比较抽象。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映,它是实施数学思想的手段。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。
在初中数学的学习中,要求了解的数学思想有:方程函数的思想、数形结合的思想、转化的思想、分类讨论的思想、隐含条件的思想、整体代换的思想、类比的思想等。要求“了解”的方法有:分类法、类比法、反证法;要求“理解”或“会运用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图像法、特值法等。其实思想和方法是不能截然分开的,初中数学中用到的各种方法都体现着一定的思想,而数学思想又是对方法的理性认识。因此,通过对数学方法的理解和应用以达到对数学思想的了解,是使思想与方法得到交融的有效方法。
在数学学习的过程中,一定要全面渗透数学思想与方法,学习了一个知识点或做了一道题,要认真思考一下,用到了哪些数学思想与方法。数学思想与方法虽然说法各异,但毕竟是有限的,正确运用数学思想与方法学习数学或解题,有利于对知识进行比较归类,只有这样,才能把所学知识学得系统,学得灵活,才能把所学的知识真正纳入到你的知识结构中去,变成自己的财富。
另外,由于数学思想的抽象*,数学方法虽然比较具体,但方法本身就是科学,是一种更为重要的知识,还是有一定难度的,所以,在刚接触时,难免理不出头绪,这是一种正常现象,不用产生惧怕心理。特别是数学思想,是一个逐渐渗透的过程,要在循序渐进的学习过程中结合具体的数学知识或题目去理解。
如在学习有理数、三角形、四边形、圆周角和弦切角定理的证明、一元二次方程求根公式的推导等知识时,会涉及到分类讨论的思想。分类讨论思想的原则是:标准统一、不重不漏。它的优点是具有明显的逻辑性特点,能很好地训练一个人思维的条理性和概括性。
方程的思想实现了由小学的算术法向初中代数法的转化,这是数学思想的一个实质性飞跃。方程的思想是指对于数学问题中的未知量和已知量之间的关系,用构建方程的方法去解决。我们会发现,许多问题只要借助列方程的方法去解决,往往使得问题迎刃而解。
数形结合的思想有利于把抽象的知识形象化。在初中数学的学习中,“数”与“形”是密不可分的,如借助数轴能很好地理解有理数的有关概念和运算,许多列方程解应用题的题目通过题意画出图形能容易地找出各量之间的相等关系,函数问题等就更离不开图象了。往往借助图象能使问题明朗化,容易找到问题的关键所在,从而解决问题。
转化的思想具体表现为从未知到已知的转化、一般到特殊的转化等。
这些数学思想与方法,也会贯穿在老师教学的过程中,在课堂上要注意专心听讲,向老师学习,向课堂学习。
四、形成良好的思维品质是理解数学问题的基础。
数学,作为培养人的思维能力的一门学科,以其理性的思考而引人入胜。它不像游山观景,以其迷人的景色让人赏心悦目,流连忘返。数学学习,是通过思考与反思去研究事物的空间形式和数量关系,让事物的空间形式与数量关系呈现出来。只有形成良好的思维品质,以良好的思维品质这把利刃拔开事物的表象,才能“看”到事物的本质。
那么什么是良好的思维品质呢?我们以生活中“串门”这种现象为例来说明。许多人都有这样的生活体验,让别人带着去某人家串门,去了一次,两次,也可能是多次。有一天你不得不自己去某人家串门。当你走到某人家附近时,面对林立的整齐划一的建筑群,你茫然失措了,不知道某人家到底在哪儿。
在学习过程中,我们就经常出现这样的现象。在课堂上,老师讲得头头是道,同学们听得只点头,感觉明白至极。而一让同学们自己做题,又不知从何入手了。主要原因就在于同学们没有对所学的知识进行深入的思考,去理解所学知识的本质。就像串门,每次去某人家的时候,我们就应该对某人家周围的地理环境,特别是有什么特殊的标志进行记忆一样。要理解我们所学的知识有什么特点,有哪些内容是需要记住的,特别是这一节知识涉及到哪些数学思想和方法是需要及时掌握的。该记忆的内容要注意用心去记,只有记住必要的知识,思维才有依据。另外,要注意作好笔记。培根在《论求知》中说:“作笔记能使知识精确。如果一个人不愿做笔记,他的记忆力就必须强而可靠”。要注意把老师讲的重点,特别是老师总结的一些经验性、规律性的知识记下来,便于课后及时复习。课后复习,要思考有哪些问题已经搞会了,有哪些问题还没有搞会,并及时做好查漏补缺的工作。
以上从四个方面谈了如何学好初中数学的问题。要学好初中数学,除了要做到上边所谈外,勤奋刻苦的学习精神,认真仔细的学习态度,培养良好的学习习惯也是学好数学的关键。在课堂上,不仅是学习新知识,还要潜移默化地学 习 老师解决问题的思维方式,面对一个问题,最后是提前思考,找出自己的思维方式,然后把自己的思维 方式与 老师的思维方式作比较,取长补短,进而形成自己的思维方式。由“要我学”转变为“我要学”,培养学习的主动*,克服被动学习的局面。真正掌握数学学习的要领。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的数学基础知识,掌握学习数学的思想与方法,只是学好数学的前提,能独立解题、解对题才是学好数学的标志

网友(5):

理解几何公式,好好的理解自然而然的就会记住的。再做些题目,一定要遵守由简单到复杂的顺序慢慢来,不要着急。都做些类似的题,自己不会的那种。题目不需要记的,需要记得是老师说的公式,方法。下课就是要再想一遍方法。不懂得问老师,不好意思问,就问同学。