∵π/2∴π/4∴sin[a-(b/2)]>0,cos[(a/2)-b]>0.∵cos[a-(b/2)]=-1/9,sin[(a/2)-b]=2/3,∴sin[a-(b/2)]=4√5/9,cos[(a/2)-b]=√5/3.故cos(a+b)=2cos²[(a+b)/2]-1 =2cos²[(a-b/2)-(a/2-b)]-1 =2[cos(a-b/2)cos(a/2-b)+sin(a-b/2)sin(a/2-b)]²-1 =2[(-1/9)(√5/3)+(4√5/9)(2/3)]²-1 =-239/729.
π/4所以:sin(a-B/2)=4√5/9 ,cos(a/2-B)=√5/3cos[(a-B/2)-(a/2-B)]=cos[(a+b)/2]=cos(a-B/2)cos(a/2-B)+sin(a-B/2)sins(a/2-B)=-1/9 * √5/3+4√5/9 * 2/3=7√5/27cos(a+B)=2cos[(a+b)/2]^2-1=-239/729