求函数极限的具体方法

2024年11月23日 07:21
有2个网友回答
网友(1):

如果是一般函数的话就按照输上的公式

网友(2):

函数极限的概念
  函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。   问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。   函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若极限 存在,则在该点的极限是唯一的)
编辑本段极限存在准则
  有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。   两边夹定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立   (2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A   不但能证明极限存在,还可以求极限,主要用放缩法。   单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。   在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。
编辑本段函数极限的方法
  ①   利用函数连续性:lim f(x) = f(a) x->a   (就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)   ②恒等变形   当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:   第一:因式分解,通过约分使分母不会为零。   第二:若分母出现根号,可以配一个因子是根号去除。   第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)   当然还会有其他的变形方式,需要通过练习来熟练。   ③通过已知极限   特别是两个重要极限需要牢记。