高一数学题目

2024年11月18日 18:19
有2个网友回答
网友(1):

已知向量a=(cos(x+π/8)),sin²(x+π/8)),b=(sin(x+π/8),1),

向量ab的夹角
a *b=cos(x+π/8)*sin(x+π/8)+sin²(x+π/8)*1=

函数f(x )=2a *b -1= 2cos(x+π/8)*sin(x+π/8)+2sin²(x+π/8)*1-1=
=[1/2^0.5*sin(2x+π/4)-1/2^0.5*cos(2x+π/4)]*2^0.5
=sin(2x+π/4-π/4)*2^0.5
=2^0.5*sin2x

sin(a+b)=sin(a)*cos(b)+cos(a)*sin(b)
sin(a-b)=sin(a)*cos(b)-cos(a)*sin(b)
cos(a+b)=cos(a)*cos(b)-sin(a)*sin(b)
cos(a-b)=cos(a)*cos(b)+sin(a)*sin(b)

网友(2):

具体算的步骤:
-1000°=-360°*2-280°所以sin(-1000°)=sin-280°=sin(-360°+80°)=sin80°,所以:①sin(-1000°)>0

-2200°=-360°*7-320°所以cos(-2200°)=cos(-320°)>0

tan(-10)画图就能看出来了,大于零。
7月v3