求帮忙解答一道微积分题目~要过程。题不难,大家帮帮忙。急,在线等答案

2024年11月16日 14:58
有3个网友回答
网友(1):

方法一:
∵f(x)=x³cosx为奇函数
∴∫(-π/2, π/2) x³cosx dx=0

方法二:
∫(-π/2, π/2) x³cosx dx
=∫(-π/2, π/2) x³ d(sinx)
=x³sinx |(-π/2, π/2)-∫(-π/2, π/2) 3x²sinx dx
=∫(-π/2, π/2) 3x² d(cosx)
=3[x²cosx |(-π/2, π/2)-∫(-π/2, π/2) 2xcosx dx]
=-6∫(-π/2, π/2) xd(sinx)
=-6[xsinx |(-π/2, π/2)-∫(-π/2, π/2) sinx dx]
=-6cosx |(-π/2, π/2)
=0

网友(2):

分部积分
原式=积分x^3d(sinx)=x^3sinx积分sinxd(x^3)=x^3sinx积分3x^2 sinx dx
继续分部积分 可得结果

网友(3):

奇函数对称区间积分为0.