跪求高一物理的平抛运动,向心加速度等的教学学案,幻灯片也OK,总之一切有助于学习的都行,谢谢

邮箱piaozaihao@qq.com
2024年11月23日 04:45
有3个网友回答
网友(1):

当物体在具有一定初速度并水平抛出时,在空气阻力忽略不计的情况下,只在重力作用下的运动叫做平抛运动。由牛顿第二定律(F=Ma)可知,其加速度恒为g(约等于9.8米每二次方秒),又因为其合外力不与速度在同一直线上,所以物体做匀变速曲线运动。平抛运动的本质是匀速直线运动与自由落体运动的合运动,所以平抛运动遵循这两个分运动的规律。

表示方法一(时间参数式):
x=vxt
y=-0.5gt2
v2=vx2+vy2= vx2+(vt)2
重力加速度(Gravitational acceleration)是一个物体受重力作用的情况下所具有的加速度。 假设一个质量为m的质点与一质量为M的均匀球体的距离为r时,质量所受的重力大小为:

其中G为重力常数。 根据牛顿第二定律

可得重力加速度为
在地球表面附近,一质点的自由落体加速度g与它的重力加速度a稍微不同,一个质点的重量mg与它所受的重力也不同,原因是地球会自转。若考虑地球自转,则:

(测量到的重量mg)=(重力的大小ma)-(质量m×向心加速度w²R)

可以得到:

(自由落体加速度g)=(重力加速度a)-(向心加速度w²R)

注意以上式子中的减法为矢量相减。自由落体加速度实际上是小于重力加速度的,方向也略有区别,在赤道上则相差最多,但由于地球的半径与自转周期的关系,两者大约只相差0.034m/s²,因此在日常使用的计算上,重量与重力之间的差异通常是可忽略的。

地表附近的所有物体下降的加速度都介于9.78和9.83m/s²之间,差别是取决于纬度等因素(赤道最少,南北极最大),标准重力加速度是9.80665 m/s²(为方便计算,一般使用9.81 m/s²或10 m/s²)。

加速度是物理学中的一个物理量,是一个矢量,主要应用于经典物理当中,一般用字母表示,在国际单位制中的单位为米每二次方秒()。加速度是速度矢量关于时间的变化率,描述速度的方向和大小变化的快慢。

加速度由力引起,在经典力学中因为牛顿第二定律而成为一个非常重要的物理量。在惯性参考系中的某个参考系的加速度在该参考系中表现为惯性力。加速度也与多种效应直接或间接相关,比如电磁辐射
简单地说,速度描述了位置是如何变化的,则加速度描述了速度是如何变化的。比如,水平地向前扔出一个物体,起初它的速度朝向正前,然而由于重力它开始在向前的同时向下坠落,即其速度改变了。这里改变物体速度的主要是地球的重力引起的重力加速度。

参见:矢量
加速度具有矢量性质,即需要用大小和方向同时描述一个加速度。在光滑水平面上向前运动的物体,如果向左或向右施以力,即给予了不同的加速度,则其速度会发生变化,然而向左的加速度和向右的加速度显然引起了不同的效果。同样,施力的大小不同,引起的加速度不同,最终的结果也不一样。作为一个矢量,加速度的叠加和分解分别遵循平行四边形法则和三角形法则。

稍微准确点说,加速度描述的是速度随时间的变化率。需要注意的是,由于速度也是矢量,因此加速度不为零的物体速度的大小(称之为速率)也不一定会发生变化,实际上,如果加速度保持与速度垂直,速度大小就一直不会改变,同时方向一直改变。这种情况在生活中最常见的是圆周运动,比如在被拴在一端固定的线的另一端的一个小物体在线保持绷直时做的运动,又比如带电粒子在仅受静磁场的洛伦兹力时做的运动。

[编辑] 直线运动中的平均加速度 瞬时加速度设质点A在数轴上运动,时刻位于处,经过时间后位于处,则定义质点A在时刻的瞬时速度(简称速度)为

其中,表示对位移关于时间求一阶导数,在时间-位移图上表现为求斜率。

首先,定义时刻到时刻之间的平均加速度为

平均加速度粗略地表示了在该段时间内物体速度的变化情况。如果越小,该段时间内速度的波动就越小,描述的速度变化情况也就越精细,从而定义质点A在时刻的瞬时加速度为

三个质点从坐标原点以相同的速度出发,由于分别拥有正、零、负的加速度而导致其位置和关于时间的曲线。
瞬时加速度,简称加速度[1]。进而有

在直线运动时,矢量退化为带符号的标量,其绝对值表示该物理量的大小。速度为正表示向右,速度为负表示向左。加速度与速度方向相同(即符号相同)时表示物体不断加速,不同则表示物体不断减速。

右图画出了三个质点在从坐标原点以相同的速度出发,由于分别拥有正、零、负的加速度而导致其位置关于时间的曲线。可以将其想象为在光滑桌面上,三个木块以相同初速度,沿斜面向下、沿水平面、沿斜面向上滑行。

在位移-时间图上,加速度由曲线的凹凸性表示,加速度为正的部分表现为凸函数,反之为凹函数。

[编辑] 空间曲线运动中的加速度
用两次差分表示如何从位移矢量近似地得到加速度矢量。设质点A在空间中运动,原点O指向A的矢量为其矢径,则可类似定义其速度矢量和加速度矢量为[2]

网友(2):

你好懒啊!好孩子上课认真听见嘛嘿嘿!

网友(3):

发到你邮箱了,注意查收
邮件标题:必修2(平抛运动等)详细教学案