因式分解:x^5+x^4+x^3+x^2+x+1

2024年11月19日 02:38
有3个网友回答
网友(1):

原式=x^4(x+1)+x^2(x+1)+(x+1)
=(x+1)(x^4+x^2+1)
=(x+1)(x^4+2x^2+1-x^2)
=(x+1)[(x^2+1)^2-x^2]
=(x+1)(x^2+x+1)(x^1-x+1)

网友(2):

原式=x^4(x+1)+x^2(x+1)+(x+1)
=(x+1)(x^4+x^2+1)
=(x+1)(x^4+2x^2+1-x^2)
=(x+1)[(x^2+1)^2-x^2]
=(x+1)(x^2+x+1)(x^2-x+1)

网友(3):

x^4(x+1)+x^2(x+1)+(x+1)
=(x+1)(x^4+x^2+1)
=(x+1)(x^4+2x^2+1-x^2)
=(x+1)[(x^2+1)^2-x^2]
=(x+1)(x^2+x+1)(x^1-x+1)