大学高数极限问题

2024年11月16日 14:21
有2个网友回答
网友(1):


如图

网友(2):

(4)
lim((x,y)->(0,0)) xy/[√(2-e^(xy)) -1 ]
=lim((x,y)->(0,0)) xy.[√(2-e^(xy)) +1 ]/ [ 1 - e^(xy) ]
=lim((x,y)->(0,0)) xy.[√(2-e^(xy)) +1 ]/ (-xy)
=lim((x,y)->(0,0)) -[√(2-e^(xy)) +1 ]
= -(1+1)
=-2
(5)
lim((x,y)->(2,0)) sin(xy)/y
=lim((x,y)->(2,0)) xy/y
=lim((x,y)->(2,0)) x
=2
(6)
lim((x,y)->(0,0)) [ 1- cos(x^2+y^2) ]/[ (x^2+y^2).e^(x^2.y^2) ]
=lim((x,y)->(0,0)) (1/2)(x^2+y^2)^2 /[ (x^2+y^2).e^(x^2.y^2) ]
=lim((x,y)->(0,0)) (1/2)(x^2+y^2) /e^(x^2.y^2)
=0