题目理解1
√2a+1+√2b+1=√2(a+b)+2=√2+2>2√2
题目理解2
原式^2=(√(2a+1)+√(2b+1))^2=4+2√(2a+1)*(2b+1)=4+2√(4ab+3)<=4+2√(4*0.5*0.5+3)=8
所以关系是√2a+1+√2b+1<=2√2
(因为a+b=1,当a=b=0.5 ab取最大值)
8
=2((2a+1)+(2b+1))
=2a+1+2b+1+((2a+1)+(2b+1))
大于=(2a+1)+(2b+1)+2√((2a+1)(2b+1))
=(√2a+1+√2b+1)(√2a+1+√2b+1)
小于
√2a+1+√2b+1<=2√2
(√2a+1+√2b+1)²=4+2√(2a+1)*(2b+1)=4+2√(4ab+3)<=4+2√4=8(均值不等式)
∴√2a+1+√2b+1<=2√2