y=arctan根号(x^2-1) +ln[x(secx +tanx)],求二阶导数d^2y⼀d

^2
2024年11月20日 16:41
有1个网友回答
网友(1):

写与方便把y拆成y=m+n

m=arctan√(x^2-1)
m'=[1/(1+x²-1)]*[√(x^2-1)]'
=[1/(1+x²-1)]*[x/√(x²-1)]
=1/[x√(x²-1)]
m''=(1/x)'[1/√(x²-1)]+(1/x)[1/√(x²-1)]'
=(-1/x²)[1/√(x²-1)]+(1/x)[x/√(x²-1)]
=-1/[x²√(x²-1)]+1/√(x²-1)

n=ln[x(secx +tanx)]
n'=[1/x(secx+tanx)]*[x(secx +tanx)]'
=[1/x(secx+tanx)]*[x(secxtanx+sec²x)+(secx +tanx)]
=(secxtanx+sec²x)/(secx+tanx)+1/x
=secx(secx+tanx)/(secx+tanx)+1/x
=secx+1/x

n''=secxtanx-1/x²

y''=m''+n''=secxtanx-1/x²-1/[x²√(x²-1)]+1/√(x²-1)