Sn+1=-an+1-(1/2)n+2
∴Sn+1-Sn=an+1=-an+1-(1/2)n+2-(an-(1/2)n-1+2)=-an+1+an+(1/2)n
即:2an+1=an+(1/2)n
又bn=2nan
∴bn+1=2n+1an+1=2nan+2n(1/2)n=2nan+1=bn+1
∴数列{bn}是公差为1的等比数列
令n=1,可求a1=1/2
∴b1=1
所以bn=n
∴an=bn/2n=n/2n=n(1/2)n