平面向量

2024年11月22日 00:04
有2个网友回答
网友(1):

向量法:

设BM=e1,CN=e2,
则AM=AC+CM=-3e2-e1,BN=2e1+e2. ∵A、P、M和B、P、N分别共线,
∴存在λ、μ∈R,使得
AP=λAM=-λe1-3λe2,BP=μ BN=2μe1+μe2.
故BA=BP-AP=(λ+2μ)e1+(3λ+μ)e2.而BA=BC+CA=2e1+3e2,
由基本定理得 λ+2μ=2 3λ+μ=3 λ=4/5 μ=3/5
∴AP∶PM=4∶1.

几何法:

过M做MD//BN交AC于D
M是BC的中点
==>DC=DN =(1/2)NC
AN=2NC ===>DN=(1/4)AN
PN//MD ===>AP:PM =AN:ND =4:1

网友(2):