过点A做直线AC//GN,如图所示,连接CD、BE,作BK⊥AC于K,CH⊥AB于H, 设直线DE和BC之间的距离为h,则: S△ABC:S△ADC =1/2AB*CH:1/2AD*CH = AB:AD S△ABC:S△AEB =1/2AC*BK: 1/2AE*BK = AC:AE S△DBC=1/2BC*h=S△EBC(同底等高) ∵S△ADC=S△ABC-S△DBC S△AEB=S△ABC-S△EBC=S△ABC-S△DBC ∴S△ADC=S△AEB ∴S△ABC:S△ADC=S△ABC:S△AEB ∴AB:AD=AC:AE 即:(AD+BD):AD=(AE+EC):AE 即:1+BD:AD=1+EC:AE ∴BD:AD=EC:AE 即:AD:BD=AE:EC