已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,

2024年11月18日 00:34
有2个网友回答
网友(1):

1、证明:因为AB=AC,AD⊥BC,
所以∠BAD=∠CAD(三线合一),
又因为AN平分∠CAM,∠BAC+∠CAM=180°,
所以∠CAD+∠CAN=180°/2=90°,
又因为CE⊥AN,
所以AD∥CE,∠ADC=∠CEA=∠DAE=90°,
则∠DCE=90°,
所以四边形ADCE是矩形.
2、当△ABC是等腰直角三角形时,四边形ADCE是一个正方形.
证明:因为△ABC是等腰直角三角形,
则∠BAC=90°,
所以∠DAC=45°,
又因为四边形ADCE是矩形,
所以∠ADC=90°,
所以∠ACD=45°,
所以AD=DC,
所以四边形ADCE是正方形.

网友(2):

1)∠MAC=∠B+∠C,因为AB=AC,所以∠B=∠C,所以∠C=1/2 ∠MAC,因为AN是△ABC外角∠CAM的平分线,所以∠NAC=1/2 ∠MAC,所以∠NAC=∠C,因为AD⊥BC,所以∠C+∠DAC=90度,所以 ∠EAD=90度。四边形ADCE有三个角为直角了,所以得证。
2)△ABC为直角三角形时,四边形ADCE是一个正方形