虚数的实际意义

到底是什么?比如"根号下-2",在科学上到底有什么实际意义?
2024年11月19日 16:34
有4个网友回答
网友(1):

把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。

在数学中,虚数是对实数系的扩展。利用复数可以构建四维坐标系,四维坐标系是三维实数坐标系与三维虚数坐标系组合而成的。三维实数坐标系上的点与四维复数坐标系存在映射对应关系,每一个实数坐标点对应两个不同的四维坐标点。因此,虚数只有在四维坐标中才具有现实的数值意义。

扩展资料

1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。

而在工程运算中,为了不与其他符号(如电流的符号)相混淆,有时也用j或k等字母来表示虚数的单位。通常,我们用符号C来表示复数集,用符号R来表示实数集。

参考资料来源:百度百科-虚数

网友(2):

大多数人最为熟悉的数有两种,即正数(+5,
+17.5)和负数(-5,-17.5)。负数是在中世
纪出现的,它用来处理3-5这类问题。从古代人看来,要
从三个苹果中减去五个苹果似乎是不可能的。但是,中世纪
的商人却已经清楚地认识到欠款的概念。“请你给我五个苹
果,可是我只有三个苹果的钱,这样我还欠你两个苹果的钱。”
这就等于说:(+3)-(+5)=(-2)。
  正数及负数可以根据某些严格的规则彼此相乘。正数乘
正数,其乘积为正。正数乘负数,其乘积为负。最重要的是,
负数乘负数,其乘积为正。
  因此,(+1)×(+1)=(+1);
(+1)×(-1)=(-1);
(-1)×(-1)=(+1)。
  现在假定我们自问:什么数自乘将会得出+1?或者用
数学语言来说,+1的平方根是多少?
  这一问题有两个答案。一个答案是+1,因为(+1)
×(+1)=(+1);另一个答案则是-1,因为(-1)
×(-1)=(+1)。数学家是用√ ̄(+1)=±1来
表示这一答案的。(碧声注:(+1)在根号下)
  现在让我们进一步提出这样一个问题:-1的平方根是
多少?
  对于这个问题,我们感到有点为难。答案不是+1,因
为+1的自乘是+1;答案也不是-1,因为-1的自乘同
样是+1。当然,(+1)×(-1)=(-1),但这是
两个不同的数的相乘,而不是一个数的自乘。
  这样,我们可以创造出一个数,并给它一个专门的符号,
譬如说#1,而且给它以如下的定义:#1是自乘时会得出
-1的数,即(#1)×(#1)=(-1)。当这种想法
刚提出来时,数学家都把这种数称为“虚数”,这只是因为
这种数在他们所习惯的数系中并不存在。实际上,这种数一
点也不比普通的“实数”更为虚幻。这种所谓“虚数”具有
一些严格限定的属性,而且和一般实数一样,也很容易处理。
  但是,正因为数学家感到这种数多少有点虚幻,所以给
这种数一个专门的符号“i”(imaginary)。我们可以把正
虚数写为(+i),把负虚数写为(-i),而把+1看作
是一个正实数,把(-1)看作是一个负实数。因此我们可
以说√ ̄(-1)=±i。
  实数系统可以完全和虚数系统对应。正如有+5,
-17.32,+3/10等实数一样,我们也可以有
+5i,-17.32i,+3i/10等虚数。
  我们甚至还可以在作图时把虚数系统画出来。
  假如你用一条以0点作为中点的直线来表示一个正实数
系统,那么,位于0点某一侧的是正实数,位于0点另一侧
的就是负实数。
  这样,当你通过0点再作一条与该直线直角相交的直线
时,你便可以沿第二条直线把虚数系统表示出来。第二条直
线上0点的一侧的数是正虚数,0点另一侧的数是负虚数。
这样一来,同时使用这两种数系,就可以在这个平面上把所
有的数都表示出来。例如(+2)+(+3i)或
(+3)+(-2i)。这些数就是“复数”。
  数学家和物理学家发现,把一个平面上的所有各点同数
字系统彼此联系起来是非常有用的。如果没有所谓虚数,他
们就无法做到这一点了。

网友(3):

楼上的太繁了,复数作用很大的,它可以帮助我们解决一些几何问题以及代数问题,而且它作为实数域的扩展,也正是解决了实数域内无法解决的问题。

网友(4):

引入复数的概念哈哈!