数据库和数据仓库的区别是什么?

2024年11月22日 08:34
有3个网友回答
网友(1):

大家都知道,我们在进行数据分析工作的时候会用到数据库这一工具,可能大家还听说过数据仓库这个工具,数据库和数据仓库很容易被大家混淆。很多人认为数据库和数据仓库是一类事物,其实并不只是这样的,那么大家知不知道数据库和数据仓库的区别是什么呢?下面我们就为大家介绍一下数据库和数据仓库的相关知识。
一般来说,传统数据库是为存储而生,而数据仓库很明显,是为分析而生。实现目的的不同一开始就注定它们的差异。传统数据库包括增删改查,但数据仓库注重查询。而传统数据库的主要任务是执行联机事务处理。主要负责日常操作。而数据仓库系统在数据分析和决策方面为用户或“知识工人”提供服务,可以以不同的格式组织和提供数据,以便应付不同的需求,这种系统称作联机分析处理。这就是数据库和数据仓库的相关知识。
那么数据仓库和数据库的区别是什么呢?首先需要我们考虑用户和系统的面向对象,数据库是面向顾客的,用户操作员,客户和信息技术人员的事务和查询处理。数据仓库是面向市场的,用于知识工人的数据分析。从中我们可以发现数据库和数据仓库的面向对象是不一样的。
当然,在数据内容中两者也是有很大的区别的,一般来说数据库管理当前数据。但是一般这种数据比较琐碎,很难用于决策。数据仓库系统管理大量历史数据,提供汇总和聚集机制,而且在不同的粒度层上存储和管理信息。
在数据库设计设计中,数据库和数据仓库也是有区别的,数据库系统采用实体联系数据模型和面向应用的数据库设计。而数据仓库系统采用星形或雪花模型和面向主题的数据库设计。
而在视图中,二者也是有所区别的,数据库关注一个企业或部门内部的当前数据,不涉及历史数据或不同单位的数据。数据仓库经常需要跨域数据库模式的不同版本。
在访问模式中,数据库和数据仓库也是有所区别的,数据库系统主要由短的原子事务组成,一般需要并发控制和恢复机制。而数据仓库系统的访问大部分是只读操作。
在这篇文章中我们给大家介绍了关于数据库和数据仓库之间的区别的相关知识,通过对这些知识的了解我们可以更好地区分数据库和数据仓库,也希望大家在学习过程中能够融会贯通,得心应手。

网友(2):

数据仓库本身是一个非常大的数据库,但数据仓库存储的是由组织作业数据库中整合而来的数据;数据库是面向事务的设计,数据仓库是面向主题设计的;数据库一般存储业务数据,数据仓库存储的一般是历史数据;数据库设计是尽量避免冗余,一般针对某一业务应用进行设计,比如一张简单的User表,记录用户名、密码等简单数据即可,符合业务应用,但是不符合分析,数据仓库在设计是有意引入冗余,依照分析需求,分析维度、分析指标进行设计;数据库是为捕获数据而设计,数据仓库是为分析数据而设计。
参考资料:《大学计算机-计算思维导论》,清华大学出版社2019

网友(3):

数据库与数据仓库的区别实际讲的是 OLTP 与 OLAP 的区别。

操作型处理,叫联机事务处理 OLTP(On-Line Transaction Processing,),也可以称面向交易的处理系统,它是针对具体业务在数据库联机的日常操作,通常对少数记录进行查询、修改。用户较为关心操作的响应时间、数据的安全性、完整性和并发支持的用户数等问题。传统的数据库系统作为数据管理的主要手段,主要用于操作型处理,像Mysql,Oracle等关系型数据库一般属于OLTP。

分析型处理,叫联机分析处理 OLAP(On-Line Analytical Processing)一般针对某些主题的历史数据进行分析,支持管理决策。

首先要明白,数据仓库的出现,并不是要取代数据库。数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储业务数据,数据仓库存储的一般是历史数据。

数据库设计是尽量避免冗余,一般针对某一业务应用进行设计,比如一张简单的User表,记录用户名、密码等简单数据即可,符合业务应用,但是不符合分析。数据仓库在设计是有意引入冗余,依照分析需求,分析维度、分析指标进行设计。

数据库是为捕获数据而设计,数据仓库是为分析数据而设计。

以银行业务为例。数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记账。数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要设立ATM了。

显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。

数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。

关于派可数据,用心创造数据价值 让数据分析更简单