根号下(1+x的平方)的导数怎么求

2024年11月20日 19:20
有5个网友回答
网友(1):

计算过程如下:

根据题意,设y为导数

y=√(1+x^2)

y'={1/[2√(1+x^2)] } d/dx ( 1+x^2)

={1/[2√(1+x^2)] } (2x)

=x/√(1+x^2)

即原式导数为:x/√(1+x^2)

导数性质:

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

网友(2):

计算过程如下:

根据题意

设y为导数

y=√(1+x^2)

y'={1/[2√(1+x^2)] } d/dx ( 1+x^2)

={1/[2√(1+x^2)] } (2x)

=x/√(1+x^2)

即原式导数为:x/√(1+x^2)

扩展资料:

如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。

导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。

进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。

网友(3):

如图,请采纳

网友(4):

这是个复合函数的求导问题:
设Y=1+X^2,则原来的函数就是√Y。
√Y的导数是1/2Y^(-1/2)
1+X^2的导数是2X
原来的函数的导数为1/2Y^(-1/2)·(2X)=1/2(1+X^2)^(-1/2)·(2X)
而后把它整理得:X/(√(1+X^2)

网友(5):

x2-1的1/2次幂 求导之后是1/2*【(x2-1)的-1/2次幂】*【(x2-1)的导数】 第二个中括号的导数就是2*x 把这个代入第二个中括号的位置
结果就是
x*【(x2-1)的-1/2次幂】