设v=v(x,y)有连续的一阶偏导数,u=u(x,y)=xv+yφ(v)+ψ(v),其中φ,ψ可微,且x+yφ′(v)+

2024年11月23日 03:22
有1个网友回答
网友(1):

解答:证明:由u=u(x,y)=xv+yφ(v)+ψ(v),得
ux=v+xvx+yφ′(v)vx+ψ′(v)vx
而x+yφ′(v)+ψ′(v)=0,
∴ux=v
∴uxx=vx,uxy=vy
又uy=xvy+φ(v)+yφ′(v)vy+ψ′(v)vy=φ(v),
∴uyy=φ′(v)vy,uyx=φ′(v)vx
于是uxx=vx,uyy=φ′(v)vy,uxy=vy,uyx=φ′(v)vx

?2u
?x2
?
?2u
?y2
?(
?2u
?x?y
)2vxφ′(v)vy?uxy?uyx=vxφ′(v)vy-vyφ′(v)vx=0.