(1)当∠BAC=90°时
∵BA=BD
∴∠BAD=90°-1/2∠B
∴∠CAD=1/2∠B
∵CA=CE
∴∠CAE=1/2∠ACB
∴∠DAE=1/2(∠ABC+∠ACB)=45°
所以不变
(2)当AB=AC时,∠B=∠ACB
∵CA=CE
∴∠CAE=1/2∠ACB
∵BA=BD
∴∠BDA=90°-1/2∠B
∴∠CAD=∠BDA-∠ACD=90°-1/2∠B-∠B
∴∠DAE=90°-1/2∠B-∠B+1/2∠B=90°-∠B
∴∠DAE=1/2(180°-2∠B)=1/2∠BAC
1)解:
设∠1=x°
∵AB=BD
∴∠3=∠4=90-1/2x
∵∠BAC=90°
∴∠5=1/2x
∠2=90-x
∵AC=CE
∴∠6=∠E=1/2(90-x)
∴∠DAE=1/2x+1/2(90-x)
=45°
(2)判断:∠DAE=1/2∠BAC
证明:
设∠1=x
∵AB=BD
∴∠3=∠4=(80-X)/2=90-1/2x
∵AB=AC
∴∠1=∠2=x
∴∠5=180-2x-(90-1/2x)=90-3/2x
∵AC=CE
∴∠6=∠E=1/2x
∴∠DAE=90-3/2x+1/2x=90-x
∠BAC=(90-1/2x)+(90-3/2x)=180-2x
∴∠DAE=1/2∠BAC
解:(1)∵△ABC中,∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵BD=BA,CE=CA.
∴∠BAD=(180°-45°)÷2,∠CAE=45°÷2,
∴∠DAE=90°-∠BAD+∠CAE=45°.
(2)不变.
∠DAE=90°-
180°-∠B
2
+
1
2
∠ACB=
1
2
(∠B+∠ACB)=45°,
从上式可看出当AB和AC不相等时,∠B+∠ACB也是定值为90°.
所以不变.
……
q