已知f(x)=e^(-x눀),求∫(1,0)f✀(x)f✀✀(x)dx

2025年01月05日 17:41
有2个网友回答
网友(1):

f(x) =e^(-x^2)
f'(x) = -2xe^(-x^2)
f''(x) =-2(1-2x^2)e^(-x^2)
f'(x).f''(x) =4x(1-2x^2)e^(-2x^2)
∫(0->1)f'(x)f''(x)dx
=∫(0->1)4x(1-2x^2)e^(-2x^2) dx
=∫(0->1)4xe^(-2x^2) dx -8∫(0->1)x^3e^(-2x^2) dx
=-[e^(-2x^2)](0->1) +2∫(0->1)x^2. de^(-2x^2)
=1- e^(-2) + 2[x^2. e^(-2x^2) ]|(0->1) -4∫(0->1)x. e^(-2x^2)dx
=1- e^(-2) + 2e^(-2) -4∫(0->1)x. e^(-2x^2)dx
=1- e^(-2) + 2e^(-2) +[e^(-2x^2)](0->1)
=2e^(-2)

网友(2):

(1、0)是积分0到1吗?求出f‘(x),所要积分的=1/2 f’2(x)在0和1的差值,得出答案-2/e