我们用教育行业来说一下这个问题,
2017年4月初,62个在教育行业产品获投资,这一消息,使得教育行业产品再次被热议。事实上,教育行业早已是一片红海,有调查显示,近6成的互联网学习者位于三四线城市,而一款好的教育产品,会让用户对学习这件事情上瘾,不断对后续的课程进行消费。总的来说教育行业仍旧有突出重围的希望。
在教育产品竞争如此激烈的今天,如何争夺到更多的用户,似乎是困扰着众多教育产品的问题。本文以在线教育产品为例,说说如何构建用户画像,并为下一步获客制定运营计划。
什么是用户画像
用户画像是指,建立在一系列真实数据之上的目标用户模型。根据用户的目标、行为和观点的差异,将他们区分为不同的类型,然后每种类型中抽取出典型特征,赋予名字、照片、一些人口统计学要素、场景等描述,形成了一个人物原型。
为什么要构建用户画像
构建用户画像,就是帮产品找到用户真实的述求点,能够帮产品的功能设计提供依据。对运营人员来说,最基本的一点就是了解用户。通过对用户信息的采集,分析,抽离,生成最终的用户画像。构建用户画像后,就可以制订更精准的运营方案了。
在线教育产品,如何构建用户画像
1.用户画像分析逻辑
在构建用户画像之前,先来看看用户画像构建、分析的一个逻辑。
2.信息采集与分析
在线教育产品构建用户画像的第一步 ,收集用户的基本信息。此处重点收集三个维度的用户信息,个人信息,社会关系,消费水平。
个人信息:在这一维度,可以采集包括年龄,性别,教育程度,职业等基本属性。在线教育产品可以重点采集教育程度,职业等信息。
个人信息是一个人的基本属性,一般不会轻易改变。个人信息这一维度的数据,有很大的参考意义。
社会关系:是否已婚,是否有小孩,有其他兄弟姐妹吗,父母亲分别是谁呢。用户的社会关系以及社会关系的个人信息,可以推断出这个人的性格。
用户的社会关系关乎一个人的隐私,一般比较难获取。
消费水平:月收入是多少,月消费能力怎样,是否需要还房贷,是否有信用卡。
消费水平可以直观的看出用户的生活状况,但是难以区分真假,因为用户有可能在说谎。
采集完用户的基本信息之后,下一步应当采集用户的行为特征。
行为特征可以理解为用户无意识的惯性行为。根据用户的行为特征,可以推断出其心理特征。
比如,用户会使用高端团购APP,可以推断出改用户对生活品质的要求较高。
3.为用户打上标签,细分人群
不同的用户群有不同的目标、行为和观点,细分用户群可将问题变的清晰,同时也作为用户画像优先级划分的依据。
根据采集的用户信息,将用户打上专属标签,后续可根据标签,对用户进行细分。
4.丰富用户信息
丰富用户画像是构建用户画像过程中最需要打磨的一个部分,将采集到的大量枯燥且凌乱的数据,分析且赋予更多的元素,让它们成为鲜活的个体,非常考验团队的敏锐度和细腻度。
根据用户画像,如何在精细化运营上发力
对运营来说,构建完用户画像,但是没有将用户画像应用到运营推广中,就等于做了个无用功。在线教育产品在构建完用户画像之后,应该重点考虑如何利用用户画像,辅助课程开发和产品运营,做到精细化运营。
做精细化运营的一个基本思路就是理清楚一个逻辑:在什么时间把什么内容发给什么类型的用户。
1.根据搜索数据的个性化运营
用户浏览了某一个课程,可以根据用户标签,推荐相同类型的课程。
更多内容,可百度一下“在线教育app:构建用户画像并制定运营计划怎么做”。
现在越来越多的个人,企业开始重视用户画像,这个概念也越来越火,随之也火了一些软件,比如里德助手,我身边就很多人在用。现在微信是公认的最大公域流量池。所以很多人也在上面想分一杯羹,做自己的私域流量池。那么标签就是一个离不开的话题,这种软件可以批量的进行标签分类,详细的给微信好友进行标签归类,然后再配合它强大的一键群发功能,可以轻松的按照标签给不同的客户推送不同的营销活动,确实还挺方便的。
通俗来讲,用户画像是一种勾画目标用户、联系用户诉求与设计方向的有效工具,它在各领域已经得到了广泛应用。建立用户画像,“标签”是其最核心的部分,而包括多层次标签结构的定义、标签逻辑定义、多种标签生成方式等完整的标签管理模块非常重要,个人觉得DM Hub在这方面做得不错,可支持手工批量打标签、自动化流程标签、自动化规则标签、模型计算标签和自定义逻辑标签等不同的生成方式,强大的标签模板库能供各个行业选择,有效缩短建立整体标签库的时间。