∫(0,π)|sinx-cosx|dx

2024年12月03日 17:25
有1个网友回答
网友(1):

∫(0,π)|sinx-cosx|dx
=∫(0,π)√2|sin(x-π/4)|dx
=-∫(0,π/4)√2sin(x-π/4)dx+∫(π/4,π)√2sin(x-π/4)dx
=-[-√2cos(x-π/4)](0,π/4)+[-√2cos(x-π/4)](π/4,π)
=[√2cos(x-π/4)](0,π/4)-[√2cos(x-π/4)](π/4,π)
=√2-1-[(-1)-√2]
=2√2