简单分析一下,答案如图所示
先算f'(x)=-e^-x,f'(lnx))=-e^-lnx∫f'(lnx)/xdx=∫f'(lnx)dlnx=∫(-e^-lnx)dlnx=∫(e^-lnx)d(-lnx)=e^-lnx=1/xe^-lnx=e^ln(1/x)=1/x,最后积分是对d(-lnx)积分,此时将(-lnx)看成一个整体了,相当于∫e^tdt=e^t,其中t=-lnx