一般情况下得到的离散的数据点没有明显的拟合函数,这时候可以考虑用离散傅里叶变换。matlab中的fft函数可以完成这个功能。
特殊情况下可以看出数据点所满足的解析式,使用拟合,然后对拟合得到的函数进行傅里叶变换,用matlab的fourier函数即可。
由于一般情况中的fft更具有应用性,下面着重举例说明fft。
引用一段matlab帮助文件提供的代码作说明:(%后面是中文或英文注释)
clc;clear;
Fs = 1000; % Sampling frequency,取样频率
T = 1/Fs; % Sample time,采样时间间隔
L = 1000; % Length of signal,总时间
t = (0:L-1)*T; % Time vector,时间向量
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid 信号函数,提供50Hz和120Hz的主频率
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t)); % Sinusoids plus noise 信号函数加上模拟的噪音
plot(Fs*t(1:100),y(1:100)) % 信号图
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')
NFFT = 2^nextpow2(L); % Next power of 2 from length of y 扩充采样点,由1000变为1024
Y = fft(y,NFFT)/L;%除一个L,使归一化,可以不除,不影响对主频率的判断
f = Fs/2*linspace(0,1,NFFT/2+1);%这里除以2是因为fft的对称性,因此只画一半
% Plot single-sided amplitude spectrum.
figure
plot(f,2*abs(Y(1:NFFT/2+1))) %乘2是为了归一化,因为右边一半的fft图像没画;不乘,不影响对主频率的判断
title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')
这行代码“f = Fs/2*linspace(0,1,NFFT/2+1);”如果不理解可以写成
“f = Fs*linspace(0,1,NFFT);”然后把后面的plot行的乘2去掉,NFFT/2+1也改成NFFT,这就等于没有折叠的状态。
至于为什么对称、为什么表达式是这样,就需要去做DFT数学推导了,这里不做推导。
得图如下:
折叠了的fft图。在50与120Hz处有明显的主峰。
未折叠的fft图。右边两个峰值并没有实际意义,只是由于对称性而得到的。
meshgrid用来生成网格矩阵,简单地讲,就是把给定的x和y中元素的两两组合都生成出来,这样每一对(x,y)再计算一个对应的z,显然这样得到的是一个z的曲面。但该语句不是必须的,有时候我们只想获得一条三维曲线而已,并不想知道所有x, y元素两两组合的结果是什么,组合我们已经定义好了
参考代码:
clc
clear all
close all
tic
n = 10;
x = 1:n; % x坐标
y = 1:n; % y坐标
%%
% meshgrid演示
[X, Y] = meshgrid(x, y); % meshgrid 函数用来生成网格矩阵
Z = X.^2 + Y;
figure
mesh(X, Y, Z);
grid on
xlabel('x');
ylabel('y');
zlabel('z');
%%
% 不用meshgrid的情况
z = x.^2 + y;
figure
% mesh(x, y, z); % 没有meshgrid生成底面矩阵时,该句出错
plot3(x, y, z); % 一组(x, y)对应一个z值,因此x和y元素个数必须一致
grid on
xlabel('x');
ylabel('y');
zlabel('z');
可以使用快速傅里叶变换:fft。
在matlab命令窗口中输入:help fft.
fft函数,傅里叶变换
傅立叶变换