1+1=等于几

2024-10-31 18:17:16
有5个网友回答
网友(1):

是由德国数学家哥德巴赫提出的一个猜想(哥德巴赫猜想) 任何一个≥6之偶数,都可以表示成两个奇质数之和;任何一个≥9之奇数,都可以表示成不超过三个的奇质数之和。
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个质数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是至多两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。

在陈景润之前,关于偶数可表示为 至多s个质数的乘积 与至多t个质数的乘积之和(简称“s + t”问题)之进展情况如下:

1920年,挪威的布朗证明了“9 + 9”。

1924年,德国的拉特马赫证明了“7 + 7”。

1932年,英国的埃斯特曼证明了“6 + 6”。

1937年,意大利的蕾西先后证明了“5 + 7”,“4 + 9”,“3 + 15”和“2 + 366”。

1938年,苏联的布赫夕太勃证明了“5 + 5”。

1940年,苏联的布赫夕太勃证明了“4 + 4”。

1948年,匈牙利的瑞尼证明了存在C使得“1 + C”成立。

1956年,中国的王元证明了“3 + 4”。

1957年,中国的王元证明了“3 + 3”和“2 + 3”。

1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”,中国的王元证明了“1 + 4”。

1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3”。

1966年,中国的陈景润证明了 “1+2”。

从1920年布朗证明“9+9”到1966年陈景润攻下“1+2”,历经46年。自“陈氏定理”诞生至今的50多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。

网友(2):

你是把键盘上的1 输入成感叹号了么?如果是4个1相加当然就是4 如果是(1+1+1)!就是3的阶乘=6

网友(3):

1+1等于二你家房子没有盖儿,😂

网友(4):

肯定等于2啊,这个题你还问吗

网友(5):

答案:2

1+1=2

正常的加法运算简单。