如图所示:
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域 ,并以 表示第 个子域的面积。在 上任取一点 作和 。
如果当各个子域的直径中的最大值 趋于零时,此和式的极限存在,且该极限值与区域D的分法及 的取法无关,则称此极限为函数 在区域 上的二重积分,记为 。
这时,称 在 上可积,其中 称被积函数, 称为被积表达式, 称为面积元素, 称为积分区域, 称为二重积分号。
扩展资料:
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
积分区域D是由 所围成的区域。
其中二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。
函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。
参考资料:百度百科——二重积分
如图所示:
您好,答案如图所示: 这个区域具有轮换对称性,所以无论在哪个面积分也是一样的 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。☆⌒_...