a>b>0,求a*a+1⼀(a*b)+1⼀(a*a-a*b)的最小值

2024年11月30日 09:48
有1个网友回答
网友(1):

解:原式=a^2+1/(ab)+(1/b)[1/(a-b)-1/a]=a^2+1/(a-b)*(1/b)>a^2+1/[(a-b+b)/2]^2=a^2+4/a^2>2*a*2/a=4