∫dx⼀根号下4e^x+1

请问用换元法怎么做?我令4e^x = t
2024年12月04日 05:16
有1个网友回答
网友(1):

∫dx/√(4e^x+1)
let
e^(x/2) = (1/2)tanu
(1/2)e^(x/2) dx = (1/2)(secu)^2 du
dx = (1/2)[(secu)^2/ tanu] du
∫dx/√(4e^x+1)
=∫ (1/2)[(secu)^2/ tanu] du/ (secu)
=(1/2)∫ [(secu)/ tanu] du
=(1/2)∫ cscu du
=(1/2)ln|cscu -cotu| +C
=(1/2)ln|(1/2)√(4e^x+1) . e^(-x/2) - (1/2)e^(-x/2)| +C
=(1/4)x +(1/4)ln|4e^x+1| +C'