(Ⅰ)解:∵{an}是等差数列,由性质知a2+a9=a4+a7=31,
∴a2,a9是方程x2-31x+130=0的两个实数根,解得x1=5,x2=26,
当a2=5,a9=26时,d=3,an=3n-1;当a2=26,a9=5时,d=-3,an=-3n+32;
∴an=3n-1或an=-3n+32;
(Ⅱ)证明:由题意知Sn=na+
d,n(n?1) 2
∴bn=
=a+Sn n
d,n?1 2
∵b1,b2,b4成等比数列,∴b22=b1b4,
∴(a+
d)2=a(a+1 2
d),∴3 2
ad?1 2
d2=0,1 4
∴
d(a?1 2
d)=0,1 2
∵d≠0,∴a=
d,∴d=2a,1 2
∴Sn=na+
d=na+n(n?1) 2
2a=n2a,n(n?1) 2
∴左边=Snk=(nk)2a=n2k2a,右边=n2Sk=n2k2a,∴左边=右边,
∴Snk=n2Sk(k,n∈N*)成立.