用简便方法计算1⼀3+1⼀15+1⼀35+1⼀63+1⼀99

要过程哦要五年级学生能看懂的过程
2024年11月22日 04:10
有4个网友回答
网友(1):

1/3=0.5(1/1-1/3)
1/15=0.5(1/3-1/5)
1/35=0.5(1/5-1/7)
......
1/99=0.5(1/9-1/11)

如此讲上式加起来,提出0.5,
原式=0.5[1/1+(-1/3+1/3-1/5+1/5-...-1/9+1/9)-1/11]中间-、+相消
=0.5(1/1-1/11)
=5/11

网友(2):

分析:
1/3=1/2*(1-1/3)
1/15=1/2*(1/3-1/5)
1/35=1/2*(1/5-1/7)
1/63=1/2*(1/7-1/9)
1/99=1/2*(1/9-1/11)

所以有:
1/3+1/15+1/35+1/63+1/99
=1/2*【(1-1/3)+(1/3-1/5)+(1/5-1/7)+(1/7-1/9)+(1/9-1/11)】
=1/2*(1-1/11)
=1/2*(10/11)
=5/11

网友(3):

1/3=1/2*(1-1/3)
1/15=1/2*(1/3-1/5)
1/35=1/2*(1/5-1/7)
1/63=1/2*(1/7-1/9)
1/99=1/2*(1/9-1/11)
1/3+1/15+1/35+1/63+1/99
=1/2*【(1-1/3)+(1/3-1/5)+(1/5-1/7)+(1/7-1/9)+(1/9-1/11)】
=5/11

网友(4):

=1/(1*3)+1/(3*5)+1/(5*7)+1/(7*9)+1/(9*11)
因为1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]

所以=1/2[(1-1/3)+(1/3-1/5)+(1/5-1/7)+(1/7-1/9)+(1/9-1/11)]=1/2(1-1/11)
=1/2*(10/11)=5/11