幂等矩阵的幂等矩阵性质

2024年11月20日 01:42
有2个网友回答
网友(1):

幂等矩阵的主要性质:

1、幂等矩阵的特征值只可能是0,1。

2、幂等矩阵可对角化。

3、幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A)。

4、可逆的幂等矩阵为E。

5、方阵零矩阵和单位矩阵都是幂等矩阵。

6、幂等矩阵A满足:A(E-A)=(E-A)A=0。

7、幂等矩阵A:Ax=x的充要条件是x∈R(A)。

扩展资料:

A是n阶实对称幂等矩阵,故A的特征值只能是0和1。所以存在正交矩阵Q,使得(Q-1)AQ=diag。

设特征值1是r重,0是n-r重,则矩阵A-2I有r重特征值1-2=-1,n-r重特征值0-2=-2;所以det(A-2I)=(-1)^n*2^(n-r)。

参考资料来源:百度百科—幂等矩阵

网友(2):

幂等矩阵的主要性质:
1.幂等矩阵的特征值只可能是0,1;
2.幂等矩阵可对角化;
3.幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A);
4.可逆的幂等矩阵为E;
5.方阵零矩阵和单位矩阵都是幂等矩阵;
6.幂等矩阵A满足:A(E-A)=(E-A)A=0;
7.幂等矩阵A:Ax=x的充要条件是x∈R(A);
8.A的核N(A)等于(E-A)的列空间R(E-A),且N(E-A)=R(A)。 考虑幂等矩阵运算后仍为幂等矩阵的要求,可以给出幂等矩阵的运算:
1)设 A1,A2都是幂等矩阵,则(A1+A2) 为幂等矩阵的充分必要条件为:A1·A2 =A2·A1 = 0,
且有:R(A1+A2) =R (A1) ⊕R (A2);N(A1+A2) =N (A1)∩N(A2);
2)设 A1, A2都是幂等矩阵,则(A1-A2) 为幂等矩阵的充分必要条件为:A1·A2 =A2·A1=A2
且有:R(A1-A2) =R(A1)∩N (A2 );N (A1 - A2 ) =N (A1 )⊕R (A2 );
3)设 A1,A2都是幂等矩阵,若A1·A2 =A2·A1,则A1·A2 为幂等矩阵,且有:R (A1·A2 ) =R (A1 ) ∩R (A2 );N (A
1·A2 ) =N (A1 ) +N (A2 )。