设u=exsiny,则z=f(u) ∴zx=f′(u)exsiny,zy=f′(u)excosy ∴zxx=f″(u)(exsiny)2+f′(u)exsiny zyy=f″(u)(excosy)2?f′(u)exsiny 代入方程?2z ?x2 +?2z ?y2 =e2xz,得: f″(u)(exsiny)2+f′(u)exsiny+f″(u)(excosy)2-f'(u)exsiny=e2xf(u)即: f″(u)=f(u)这是二阶常系数齐次线性微分方程其特征方程为:r2-1=0 解得两个特征根:r1=1,r2=-1 ∴f(u)=C1ex+C2e?x(其中C1,C2为任意常数)