微分方程的特征方程怎么求的

2024年11月18日 22:37
有5个网友回答
网友(1):

二阶常系数齐次线性方程的形式为:y''+py'+qy=0其中p,q为常数,其特征方程为 λ^2+pλ+q=0依据判别式的符号,其通解有三种形式:

1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];

2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)];

3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=[e^(α*x)]*(C1*cosβx+C2*sinβx)。

最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。

扩展资料:

偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

参考资料来源:百度百科--微分方程

网友(2):

1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)]。

2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)]。

3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=[e^(α*x)]*(C1*cosβx+C2*sinβx)。

微分方程的通解:

1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)

2、两根相等的实根:y=(C1+C2x)e^(r1x)

3、一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)

扩展资料:

常用的微分算子法:

1、使用微分算子法求解二阶常系数非齐次线性微分方程的特解记忆较为方便,计算难度也可降低。引入微分算子d/dx=D,d^2/dx^2=D^2,则有 y'=dy/dx=Dy,y''=d^2y/dx^2=D^2y。

2、于是y''+p(x)y'+q(x)y=f(x)可化为(D^2+pD+q)y=f(x),令F(D)=D^2+pD+q,称为算子多项式,F(D)=D^2+pD+q即为F(D)y=f(x),其特解为y=f(x)/F(D)。

网友(3):

例如二阶常系数齐次线性方程的形式为:y''+py'+qy=0
其中p,q为常数,
其特征方程为 λ^2+pλ+q=0
不明白请追问

网友(4):

网友(5):

这个不是很好啊