已知 π 4 <α<β< π 2 ,且 sin(α+β)= 4 5 , cos(α-β)= 12

2024年11月18日 19:57
有1个网友回答
网友(1):

π
4
<α<β<
π
2
,∴
π
2
<α+β<π,-
π
4
<α-β<0,
∴cos(α+β)=-
3
5
,sin(α-β)=-
5
13
,tan(α+β)=-
4
3
,tan(α-β)=-
5
12

则sin2α=sin[(α+β)+(α-β)]
=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)
=
4
5
×
12
13
+(-
3
5
)×(-
5
13

=
63
65

cos2β=cos[(α+β)-(α-β)]
=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)
=(-
3
5
)×
12
13
+
4
5
×(-
5
13

=-
56
65

tan2β=tan[(α+β)-(α-β)]
=
tan(α+β)-tan(α-β)
1+tan(α+β)tan(α-β)

=
-
4
3
-(-
5
12
)
1+(-
4
3
) ×(-
5
12
)

=-
33
56