是不是所有函数都能泰勒展开?有什么条件么?

2024年11月08日 20:43
有5个网友回答
网友(1):

所有的函数都能够泰勒展开,没有条件。

泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

扩展资料:

泰勒公式(Taylor's formula)推导:

带peano余项的Taylor公式(Maclaurin公式):可以反复利用L'Hospital法则来推导,

f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n) (x0)/n!(x-x0)^n+o((x-x0)^n)

泰勒中值定理(带拉格郎日余项的泰勒公式):若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和:

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!*(x-x0)^n+Rn(x)

其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),这里ξ在x和x0之间,该余项称为拉格朗日型的余项。

(注:f(n)(x0)是f(x0)的n阶导数,不是f(n)与x0的相乘。)

使用Taylor公式的条件是:f(x)n阶可导。其中o((x-x0)^n)表示比无穷小(x-x0)^n更高阶的无穷小。

Taylor公式最典型的应用就是求任意函数的近似值。Taylor公式还可以求等价无穷小,证明不等式,求极限等

参考资料:百度百科——泰勒公式

网友(2):

不是的。函数能泰勒展开的必要条件是在展开点附近任意阶可导,充分条件是泰勒公式的余项能趋于零。

网友(3):

一个函数n阶可导,则这个函数就可以用泰勒公式n阶展开
即f(x)=f(x0)+f’(x0)(x-x0)+f’’(x0)(x-x0)²/2!+...+f^(n)(x0)(x-x0)^(n)/n!+0x
f^(n)(x0)表示f(x)在x0处的n阶导数.0x表示比(x-x0)^(n)更高阶的无穷小
用拉格朗日型余项表示则0x=f^(n+1)(ζ)(x-ζ)^(n+1)/n+1!
而麦克劳林公式是泰勒公式在0点展开的特例
泰勒公式可以很容易的让你得到f(x)展开式中关于x的幂次项的系数,也可由已知的函数的导数值推出原函数.多用于求极限问题
比如求lim
(e^x-x-1)/x²在x趋近于0时的极限
f(x)=e^x在x=0处二次展开=e^(0)+e^(0)*(x-0)+e^(0)(x-0)²/2!+0x
=1+x+x²/2;
那么lim
(e^x-x-1)/x²=lim
(1+x+x²/2-x-1)/x²=1/2答案补充
用导数定义去理解
f’(x)=lim
[f(x)-f(x0)]/(x-x0)其中x->x0
那么就有当x->x0时lim
f(x)-f(x0)=f’(x)(x-x0)
lim
f(x)=f(x0)+f’(x)(x-x0)
lim
f(x)其于f(x)的误差拉格朗日型余项为f^(2)(ζ)(x-ζ)^(2)/2!是(x-x0)的高阶无穷小,一般用于证明题

网友(4):

有个很简单的方法,你把X趋向的值带到展开式的后几项去,如果他们等于零,则说明这个数可以用泰勒展开,反之不行。这就是余项为零。

网友(5):

无穷级数的内容里面会给出定理证明