1+1⼀2+1⼀3+1⼀4+,,,,+1⼀n=公式

2024年11月23日 01:02
有2个网友回答
网友(1):

利用“欧拉公式”:1+1/2+1/3+……+1/n=ln(n)+C,C为欧拉常数 数值是0.5772。

则1+1/2+1/3+1/4+...+1/2007+1/2008=ln(2008)+C=8.1821(约) 。

就不出具体数字的,如果n=100那还可以求的,然而这个n趋近于无穷,所以算不出的。

具体证明过程如下:

首先我们可以知道实数包括有理数和无理数,而有理数又包括有限小数和无限循环小数,有理数都可以划成两个有限互质整数相除的形式(整数除外)。

而1+1/2+1/3+1/4+1/5+...+1/n (n为无限大)通分以后的分子和分母都是无穷大,不是有限整数,且不能约分,所以它不属于有理数,因此它是无理数。

扩展资料:

欧拉公式的验证

( 1)当 R= 2时 ,由说明 1,这两个区域可想象为 以赤道为边界的两个半球面 ,赤道上有两个“顶点” 将赤道分成两条“边界”,即 R= 2,V= 2,E= 2;于是 R+ V- E= 2,欧拉定理成立.。

( 2)设 R= m(m≥ 2)时欧拉定理成立 ,下面证明 R= m+ 1时欧拉定理也成立 。

由说明 2,我们在 R= m+ 1的地图上任选一个 区域 X ,则 X 必有与它如此相邻的区域 Y ,使得在 去掉 X 和 Y 之间的唯一一条边界后 ,地图上只有 m 个区域了。

在去掉 X 和 Y 之间的边界后 ,若原该边界两端 的顶点现在都还是 3条或 3条以上边界的顶点 ,则该顶点保留 ,同时其他的边界数不变;若原该边界一 端或两端的顶点现在成为 2条边界的顶点 。

则去掉该顶点 ,该顶点两边的两条边界便成为一条边界 。于是 ,在去掉 X 和 Y之间的唯一一条边界时只有三种 情况:

①减少一个区域和一条边界;

②减少一个区 域、一个顶点和两条边界;

③减少一个区域、两个顶 点和三条边界;

即在去掉 X 和 Y 之间的边界时 ,不 论何种情况都必定有“减少的区域数 + 减少的顶点数 = 减少的边界数”我们将上述过程反过来 (即将 X 和 Y之间去掉的边 界又照原样画上 ) ,就又成为 R= m+ 1的地图了 ,在 这一过程中必然是“增加的区域数 + 增加的顶点数 = 增加的边界数”。

因此 ,若 R= m (m≥2)时欧拉定理成立 ,则 R= m+ 1时欧拉定理也成立.。

由 ( 1)和 ( 2)可知 ,对于任何正整数 R≥2,欧拉 定理成立。

柯西的证明

第一个欧拉公式的严格证明,由20岁的柯西给出,大致如下:

从多面体去掉一面,通过把去掉的面的边互相拉远,把所有剩下的面变成点和曲线的平面网络。不失一般性,可以假设变形的边继续保持为直线段。

正常的面不再是正常的多边形即使开始的时候它们是正常的。但是,点,边和面的个数保持不变,和给定多面体的一样(移去的面对应网络的外部。)

重复一系列可以简化网络却不改变其欧拉数(也是欧拉示性数)

 

的额外变换。

若有一个多边形面有3条边以上,我们划一个对角线。这增加一条边和一个面。继续增加边直到所有面都是三角形。

除掉只有一条边和外部相邻的三角形。这把边和面的个数各减一而保持顶点数不变。

(逐个)除去所有和网络外部共享两条边的三角形。这会减少一个顶点、两条边和一个面。

重复使用第2步和第3步直到只剩一个三角形。

推理证明

设想这个多面体是先有一个面,然后将其他各面一个接一个地添装上去的.因为一共有F个面,因此要添(F-1)个面。

考察第Ⅰ个面,设它是n边形,有n个顶点,n条边,这时E=V,即棱数等于顶点数。

添上第Ⅱ个面后,因为一条棱与原来的棱重合,而且有两个顶点和第Ⅰ个面的两个顶点重合,所以增加的棱数比增加的顶点数多1,因此,这时E=V+1。

以后每增添一个面,总是增加的棱数比增加的顶点数多1,例如

增添两个面后,有关系E=V+2;

增添三个面后,有关系E=V+3;

……

增添(F-2)个面后,有关系E=V+ (F-2)。

最后增添一个面后,就成为多面体,这时棱数和顶点数都没有增加.因此,关系式仍为E=V+ (F-2),即F+V=E+2,这个公式叫做欧拉公式,它表明2这个数是简单多面体表面在连续变形下不变的数。

参考资料来源:百度百科--无理数

参考资料来源:百度百科--欧拉公式

网友(2):

随后很长一段时间,人们无法使用公式去逼近调和级数,直到无穷级数理论逐步成熟。1665年牛顿在他的著名著作《流数法》中推导出第一个幂级数:
ln(1+x) = x - x^2/2 + x^3/3 - ...
Euler(欧拉)在1734年,利用Newton的成果,首先获得了调和级数有限多项和的值。结果是:
相关书籍
相关书籍
1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量)
他的证明是这样的:
该式子为调和级数
ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...
根据Newton的幂级数有:
ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...
于是:
1/x = ln((x+1)/x) + 1/2x^2 - 1/3x^3 + ...
代入x=1,2,...,n,就给出:
1/1 = ln(2) + 1/2 - 1/3 + 1/4 -1/5 + ...
1/2 = ln(3/2) + 1/2*4 - 1/3*8 + 1/4*16 - ...
......
1/n = ln((n+1)/n) + 1/2n^2 - 1/3n^3 + ...
相加,就得到:
1+1/2+1/3+1/4+...1/n = ln(n+1) + 1/2*(1+1/4+1/9+...+1/n^2) - 1/3*(1+1/8+1/27+...+1/n^3) + ......
后面那一串和都是收敛的,我们可以定义
1+1/2+1/3+1/4+...1/n = ln(n+1) + r
Euler近似地计算了r的值,约为0.5772156649。这个数字就是后来称作的欧拉常数。不过遗憾的是,我们对这个常量还知之甚少,连这个数是有理数还是无理数都还是个谜。