由弧微分公式
y=2∫(0,x/2)√sintdt
y'=2 * (x/2)' *√sin(x/2)=√sin(x/2)
ds=√[1+(y')²]所以 ds=√[1+sin(x/2)]dx
故s=∫√[1+sin(x/2)]dx 积分区间是(0,2π)
因为
sin(x/2)=2sin(x/4)cos(x/4)
1=sin²(x/4)+cos²(x/4)
1+sin(x/2)=sin²(x/4)+cos²(x/4)+2sin(x/4)cos(x/4)=[sin(x/4) + cos(x/4)]²
所以原积分
=∫[sin(x/4) + cos(x/4)]dx
=4[-cos(x/4)+sin(x/4)] |(0,2π)
=4(0+1)-4(-1+0)
=8
vvv