分解方法如下:
用短除法可以求出78的质因数:78=2×3×13。
分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至巧斗厅最后是一个质数 。
分解质因数的有两种表示方法,除了最常用的“短除分解法”之外,还有一种方法就是“塔形分解法”。
分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。
短除法介绍:
求最大公因数的一种方法,也可销吵用来求最小公倍数。
求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因孝隐数,最后在公因数中找出最大公因数。
例:求12与18的最大公因数。
12的因数有:1、2、3、4、6、12 。
18的因数有:1、2、3、6、9、18。
12与18的公因数有:1、2、3、6。
12与18的最大公因数是6。
这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。
用短除法可以求出78的质因数:78=2×3×13.
补充相关知识:
短除法是求最大公因数的一种方法,也可用来求最小公倍数。求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。后来,使用分解质因数法来分别分解两个数的因数,再进行运算。之后又演变为短除法,一起用质数除,最后再整理。
质数就是除了1和自身外,不能再被其它数整除的数,也就是不衡桐能再拆分为除了1和它本身之外的因数的数。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的分解质因数。 分解质因数只针对合数。
把一个合数分解成若干个质因数的乘积的形式,即求质因数的过程叫做分解质因数。
分解质因数只针对合数。(分解质因数也称分解素因数)求一个数分咐薯坦解质因数,手仔要从最小的质数除起,一直除到结果为质数为止。分解质因数的算式叫短除法,和除法的性质差不多,还可以用来求多个个数的公因式。
分解方法如下:
用短除法可以求出78的质因数:78=2×3×13。
分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至最后是一个质数 。
分解质因数的有两种表示方法,除了最常用的“短除分解法”之外,还有一种方法就是“塔形分解法”。
分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。
扩展资料:
短除法介绍:
求最大公因数的一种方法,也可用来求最小公倍数。
求几个数最大公因数运磨的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。
例:求12与18的最大公因数。
12的因数有:1、旁汪斗2、3、4、6、12 。
18的因数有:1、2、3、6、9、18。
12与18的公陵橡因数有:1、2、3、6。
12与18的最大公因数是6。
这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。
分解方法如下:
用短除法可以求出78的质因数:78=2×3×13。
分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相陵橡乘形式;旁汪斗若是一个合数就继续按原来的方法,直至最后是一个质数 。
分解质因数的有两种表示方法,除了最常用的“短除分解法”之外,还有一种方法就是“塔形分解法”。
分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。

扩展资料:
短除法介绍:
求最大公因数的一种方法,也可用来求最小公倍数。
求几个数运磨最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。
例:求12与18的最大公因数。
12的因数有:1、2、3、4、6、12 。
18的因数有:1、2、3、6、9、18。
12与18的公因数有:1、2、3、6。
12与18的最大公因数是6。
这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。
78=2x3x13