cos平方乘以π⼀8-sin平方乘以π⼀8

详细过程
2024年12月03日 01:28
有1个网友回答
网友(1):

解:因为{[sin(π/8)]^2}+{[cos(π/8)]^2}=1

所以:[cos(π/8)]^2=1-[sin(π/8)]^2

所以:{[cos(π/8)]^2}-{[sin(π/8)]^2}=1-2[sin(π/8)]^2

因为:π/8=45°/2

所以:如图,可求得sin(45°/2)=[(√2)-1]/√(4-2√2)

所以:2[sin(π/8)]^2=2[sin(45°/2)]^2=(3-2√2)/(2-√2)

所以:{[cos(π/8)]^2}-{[sin(π/8)]^2}=1-(3-2√2)/(2-√2)

即:{[cos(π/8)]^2}-{[sin(π/8)]^2}=[(√2)-1]/(2-√2)