(1)证明:连接OD,
∵AP切半圆于D,∠ODA=∠PED=90°,
又∵OD=OE,
∴∠ODE=∠OED,
∴∠ADE=∠ODE+∠ODA,
∠AEP=∠OED+∠PED,
∴∠ADE=∠AEP,
又∵∠A=∠A,
∴△ADE∽△AEP;
(2)解:∵△AOD∽△ACB,
∴
0A
CA
=
OD
CB
=
AD
AB
,
∵AB=4,BC=3,∠ABC=90°,
∴根据勾股定理,得AC=
AB2+BC2
=5,
∴OD=
3
5
OA,AD=
4
5
OA,
∵△ADE∽△AEP,
∴
AE
AP
=
AD
AE
=
DE
EP
,
∵AP=y,OA=x,AE=OE+OA=OD+OA=
8
5
OA,
∴
AE
AP
=
AD
AE
=
4
5
OA
8
5
OA
=
1
2
,
则y=
16
5
x(0<x≤
25
8
);
(3)解:情况1:y=
16
5
x,BP=4-AP=4-
16
5
x,
∵△PBF∽△PED,
∴
BF
BP
=
ED
EP
,
又∵△ADE∽△AEP,
∴
ED
EP
=
AE
AP
,
∴
BF
BP
=
AE
AP
,
∴
1
4−
16
5
x
=
8
5
x
16
5
x
,
解得:x=
5
8
,
∴AP=
16
5
x=2.
情况2:如图,半圆O的半径R较大时,EP交AB延长线于点P,P在B上方;交BC于点F,F在BC之间:
CF=BC-BF=3-1=2,
过点E作EG⊥BC,
则△CGE∽△CBA,
则
EG
AB
=
CG
BC
=
CE
AC
=
2
5
,
解得,EG=
8
5
,CG=
6
5
,
FG=FC-CG=2-
6
5
=
4
5
,
PB:EG=FB:FG,
PB=
8
5
÷
4
5
=2,
AP=AB+PB=4+2=6.
故线段AP的长为2或6.