是范数符号。
范数是是数学中的一种基本概念,是具有“长度”概念的函数,用“║║”来表示。
在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。
在泛函分析中,范数定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。范数常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。
内积、度量、拓扑和范数的关系:
(1)范数——度量——拓扑:d(x,y) =║x-y║,因此赋范线性空间是度量空间;但是由度量不一定可以得到范数。
(2)如果赋范线性空间作为(由其范数自然诱导度量d(x,y) =║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。
(3)如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为赋准范线性空间。