求微分方程 (x²+1)y'+2xy=1的通解
解:(x²+1)dy+(2xy-1)dx=0
P=2xy-1;Q=x²+1;
∂P/∂y=2x=∂Q/∂x;故此方程是全微分方程,其通解u(x,y):
或写成显性形式为:y=(x+C)/(x²+1).
应是换元法:
设y=Y/(x²+1),则Y=(x²+1)y
(x²+1)y'+2xy=1
(x²+1)(Y/(x²+1))'+2x(Y/(x²+1))=1
(x²+1)((Y'(x²+1)-2xY)/(x²+1)²)+2x(Y/(x²+1))=1
Y'-(2xY)/(x²+1)+(2xY/(x²+1)=1
Y'=1
Y=x+C
(x²+1)y=x+C
所以y=(x+C)/(x²+1)