在100个连续自然数1,2,…,100中,任取51个数.证明:这51个数中,一定有两个数,其中一个数是另一个数

2024年11月30日 06:50
有1个网友回答
网友(1):

证明:把1,2,…,100分成如下50组:
A1={1,1×2,1×22,1×23,1×24,1×25,1×26}
A2={3,3×2,3×22,3×23,3×24,3×25}
A3={5,5×2,5×22,5×23,5×24}
A4={7,7×2,7×22,7×23}
?
A25={49,49×2}
A26={51}
A27={53}
?
A50={99}
则100个数中每一个都在某一组中且只在一组中,任取51个数,由抽屉原则至少有2个数来自同一组,这两个数中大数必是小数的倍数.