你用百度搜:数列求和的基本方法和技巧
第2项就是了,你下载下来就可以看到详细的
一,利用常用求和公式求和
二,错位相减法求和
三,反序相加法求和
四,分组法求和
五,裂项法求和
六,合并法求和
这些公式太麻烦了,我打不出来
我建议你建立一本错题本,不光记错题,把一些解题步骤也记下来,用到的什么方法等
我给你推荐本书吧,:《五年高考,三年模拟》里面有重难点、公式、高考趋向、知识清单、历届高考原题及详细解析。我认为不错,复习时一边用这本书一边听老师讲挺全面的
数列通项公式的十种求法
一、公式法
例1 已知数列满足,,求数列的通项公式。
解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。
二、累加法
例2 已知数列满足,求数列的通项公式。
解:由得则
所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例3 已知数列满足,求数列的通项公式。
解:由得则
所以
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例四已知数列满足,求数列的通项公式。
解:两边除以,得,
则,故
因此,
则
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。
三、累乘法
例5 已知数列满足,求数列的通项公式。
解:因为,所以,则,故
所以数列的通项公式为
评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。
例6 (2004年全国I第15题,原题是填空题)已知数列满足,求的通项公式。
解:因为 ①
所以 ②
用②式-①式得
则
故
所以 ③
由,,则,又知,则,代入③得。
所以,的通项公式为
评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。
四、待定系数法
例7 已知数列满足,求数列的通项公式。
解:设 ④
将代入④式,得,等式两边消去,得,两边除以,得代入④式得 ⑤
由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
例8 已知数列满足,求数列的通项公式。
解:设 ⑥
将代入⑥式,得
整理得。
令,则,代入⑥式得
⑦
由及⑦式,
得,则,
故数列是以为首项,以3为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。
例9 已知数列满足,求数列的通项公式。
解:设 ⑧
将代入⑧式,得
,则
等式两边消去,得,
解方程组,则,代入⑧式,得
⑨
由及⑨式,得
则,故数列为以为首项,以2为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
这些高中课本上都是有的啊,你是不懂还是没有看见呢?