已知a>0,b>0且a+b=1,求证(a+1⼀a)(b+1⼀b)>=25⼀4

2024年11月19日 11:45
有1个网友回答
网友(1):

(a+1/a)(b+1/b)
=ab+b/a+a/b+1/(ab)
=(a^2b^2+b^2+a^2+1)/(ab)
=[a^2b^2+(a+b)^2-2ab+1]/(ab)
=[a^2b^2+1-2ab+1]/(ab)
=a^2b^2/ab-2ab/ab+2/ab
=ab+2/ab-2

1=a+b>=2√(ab)
所以√(ab)<=1/2
0
因为y=x+2/x, 当00所以ab+2/ab-2>=(1/4)+2/(1/4)-2=25/4
所以(a+1/a)(b+1/b)>=25/4